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ABSTRACT
Ridesharing is becoming a popular mode of transportation
with profound effects on the industry. Recent algorithms
for vehicle-to-customer matching have been developed; yet
cross-study evaluations of their performance and applicabil-
ity to real-world ridesharing are lacking. Evaluation is com-
plicated by the online and real-time nature of the rideshar-
ing problem. In this paper, we develop a simulator for
evaluating ridesharing algorithms, and we provide a set of
benchmarks to test a wide range of scenarios encountered
in the real world. These scenarios include different road
networks, different numbers of vehicles, larger scales of cus-
tomer requests, and others. We apply the benchmarks to
several state-of-the-art search and join based ridesharing al-
gorithms to demonstrate the usefulness of the simulator and
the benchmarks. We find quickly-computable heuristics out-
performing other more complex methods, primarily due to
faster computation speed. Our work points the direction for
designing and evaluating future ridesharing algorithms.
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1. INTRODUCTION
Ridesharing is an emerging mode of transportation cur-

rently having a deep impact on the personal transportion
industry. The basic concept is that customer passengers
needing transport can hail participating vehicles on their
smartphones. These vehicles can serve multiple passengers
at a time in order to take advantage of similar trips to save
travel distance and fuel cost. Figure 1 gives an example.

Commercial services today are already facing enormous
customer loads, on the order of millions per day [2]. Soci-
etal benefits from ridesharing [40, 10, 24] can be captured by
optimizing assignment of customers to vehicles so as to max-
imize utilization of the vehicles while simultaneously using
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least possible travel distance. These assignment decisions
can be characterized by the speed of the decision-making al-
gorithm and the quality of the assignment toward optimiza-
tion objectives. Despite studies on assignment approaches
from the database [11, 12, 41, 36, 37, 9, 27, 20] and other
communities [6, 29, 22, 16, 34, 5, 15], challenges remain.

First, most evaluations do not consider the online and
real-time nature of ridesharing, possibly because offline eval-
uation is much simpler. But these offline evaluations do not
reflect the real world. Thus, there is a need for an online
and real-time evaluation platform.

Second, there is no consistent benchmark for ridesharing,
needed due to huge variation in problem scenarios. Algo-
rithm performance can be affected by many factors: the
road network; volume and velocity of customer and vehi-
cle streams; properties of the customers and vehicles, in-
cluding their distribution throughout the network; and so
on. A benchmark would standardize these factors and pro-
vide guidance for algorithm design. Existing benchmarks
for the related Dial-A-Ride problem (DARP) [15] cannot
be adapted because (1) DARP does not consider road net-
works; (2) the customers and vehicles do not represent real
ridesharing scenarios; and (3) the datasets are small com-
pared to ridesharing instances [28, 30, 19]. Thus separate
benchmarks for ridesharing are needed.

Third, cross-study evaluations of algorithms from inde-
pendent studies with precise analysis of strengths and weak-
nesses are currently missing, difficult due to the complex
nature of the ridesharing problem. For example, evaluation
procedures must address how to handle real-time match la-
tency ; they must also measure total travel distance of the
vehicles over the period of a scenario, crucial for compar-
ing algorithm quality. In terms of techniques, the database
community has focused on filtering, data structures, and
heuristics to achieve algorithm speed while others have em-
phasized grouping and other procedures for improving qual-
ity. A standardized evaluation of these different approaches
is necessary for understanding their merits, drawbacks, and
applicability to real-world ridesharing problems.

To fill these gaps, we make the following contributions:
(1) We develop the Cargo system for implementing and eval-
uating ridesharing algorithms through online, real-time sim-
ulation. Our system provides standard components and rou-
tines to ease implementation, and offers a single evaluation
protocol for ridesharing events (vehicle motion, assignment
events, etc.) that can be used to objectively compare dif-

1Guoliang Li is the corresponding author.
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Figure 1: Ridesharing example.

ferent algorithms. Our system is open source, available to
practitioners for conducting online experiments [1].
(2) We present a set of benchmark instances for the stan-
dardized evaluation of algorithms. Our benchmark is de-
signed based on real road networks with different features
(e.g. sizes and geometries) and on real ridesharing customers
and vehicles. The benchmark allows us to manipulate prop-
erties of the problem to test different situations.
(3) We present an experimental comparison of recent rep-
resentative algorithms using our benchmark and system,
and we report comprehensive findings from our experimental
evaluation. We provide new insights on the strengths and
weaknesses of existing algorithms that can guide practition-
ers to select appropriate algorithms for various scenarios.

The rest of this paper is organized as follows. Section 2
defines the ridesharing problem. Section 3 describes the
algorithms we evaluated. Section 4 describes the Cargo sys-
tem. Section 5 describes the benchmarks used in this paper.
Section 6 presents experimental results and our analysis. Fi-
nally, Section 7 concludes our work.

2. BACKGROUND
2.1 Preliminaries

Table 1 summarizes our notation.
Road Network. Let a directed graph G (V , E ) represent
a road network, with nodes in V representing intersections
and edges in E representing streets. Each edge (u, v) ∈ E
has a weight wuv (e.g. travel distance along the street). A
route is another name for a path through G , and its cost is
the sum of the weights of all the edges in the path.
Vehicles and Customers. Let vehicles and customers be
represented by origin-destination pairs. For simplification,
assume that these are bound to nodes in V . If an origin or
destination is not exactly at a node, it can be mapped to
the nearest node using existing methods [42].

Each vehicle k begins a transportation service at its origin
ko and ends the service at its destination kd. It moves by
following a route from ko to kd with a certain speed. Its
earliest possible departure time from ko (early time) and
its latest acceptable arrival time at kd (late time) form the
vehicle’s time window [ek, lk], where ek < lk.

Each customer r begins at its origin ro and requests to be
transported to its destination rd by traveling with a vehicle
that is in service. The assigned vehicle will move to ro to
pick up the customer, then to rd to drop off the customer,
thereby satisfying the customer’s travel request. Each cus-
tomer also has a time window [er, lr]. The early time er
gives the earliest possible time a vehicle can pick up cus-
tomer r, and the late time lr gives the latest drop off time
that the customer can accept. Note that time windows on
the vehicles and customers generalize “maximum detour”
and similar service guarantees encountered in the real world.

Table 1: Notation used in this paper.

Notation Description
n,m Number of customers, vehicles
r ∈ N, k ∈M Set of customers, vehicles
ro, rd Customer origin, destination
ko, kd Vehicle origin, destination
ek, er Early time for vehicle k, customer r
lk, lr Late time for vehicle k, customer r
Qk, qr Capacity of vehicle k, load on customer r
kgps Current location of vehicle k
ud(u, v) Euclidean distance from u to v
cuv Shortest-path cost from u to v
S = {u1, . . . , us} Schedule with length s
C(S, k) Cost of schedule S taken by vehicle k

Each vehicle k has an initial capacity Qk > 0, and each
customer r is associated with a load qr > 0. When a vehicle
picks up customer r, its capacity decreases by qr; when the
vehicle drops off r, its capacity increases by qr.

Example 1. We use Figure 1 as a running example. The
edges E of the road network are given in the adjacency ma-
trix; the nodes are V = {a, b, c, d, e, f, g}. Vehicle k has
origin at node a, destination at node g, and moves 1 unit of
distance per unit of time. Customer r1 aims to travel from
d to e, and customer r2 aims to travel from d to f . The
bottom table shows time windows, capacities, and loads.

2.2 Ridesharing Problem (RSP)
Given vehicles and customers on a road network, the goal

of the Ridesharing Problem (RSP) is to find the minimum-
cost set of vehicle routes that can serve all customers, sub-
ject to the following constraints:
• Precedence. A vehicle must visit ro first, and then rd,

in order to serve customer r.
• Time Windows. Each vehicle k must depart from ko

and arrive at kd within the time window [ek, lk]. For
each customer r that it serves, it must serve the cus-
tomer within the time window [er, lr].
• Capacities. Each vehicle’s capacity must always be

positive or zero.

Example 2. In the example, the solution is to route vehi-
cle k through the node sequence {a, b, c, d, c, b, e, f, g}, serv-
ing both customers. This route has a cost of 23. If k, r1,
and r2 traveled individually (no ridesharing), the sum of
their individual costs is 27.

Online Assignment. In the online problem, vehicles and
customers are not known beforehand, but revealed through-
out the day at their early times. Each revealed customer
must be assigned to a vehicle that is in service, and then
the route for that vehicle must be adjusted in order for it to
serve the customer. The objective is to minimize the total
route cost across all the vehicles at the end of the day.

As vehicles are given new assignments, their routes can
change. For each vehicle, its final route cost after it has
ended service is used to compute the total route cost.
Optimization Goals. As not every customer can be fea-
sibly served in the real world due to tight time windows,
some studies relax the requirement to serve all customers,
then add a penalty on the total route length for the un-
matched customers [38, 6, 22, 34]. Others formulate the
online problem as a series of offline instances, and then aim
to optimize each of the instances [27, 20, 14, 41], while others
simplify the problem to one-to-one matching where vehicles
have only one capacity [36, 29, 9, 5]. Other studies use
profit maximization as the objective [41]. Some studies do
not aim at global optimization, instead offering customers
choices based on price and time [11, 12, 9].



Vehicle Schedule. Given a customer request, we first need
to find a valid vehicle for the customer, which is one where
there exists at least one route for the vehicle to serve the
customer while satisfying all the constraints. We then adjust
the route of the vehicle.

The minimum-cost route for a vehicle can be expressed
using the vehicle’s schedule. Let schedule S = {u1, . . . , us}
be an ordered sequence of s unique customer origins and
destinations ui, where 1 ≤ i ≤ s gives the position of the
origin or destination in the schedule. Each arrangement of
the elements produces a different schedule. By following a
particular schedule, vehicle k visits each of the origins and
destinations in given order while it travels from ko to kd.
The shortest route through this schedule is formed by the
shortest paths through each of the schedule’s elements. Let
cuv be the shortest path cost from node u to node v. Then,

C(S, k) = cko,u1 +

s−1∑
i

cui,ui+1 + cus,kd (1)

expresses the cost of schedule S based on the shortest route
for vehicle k. The minimum-cost route for k thus corre-
sponds to the least-cost permutation of S using Equation 1.

Example 3. The best schedule for vehicle k in the example
is {a, d, d, e, f, g}, with cost cad + cdd + cde + cef + cfg = 23.

Problem Complexity. If all vehicles have their origin
and destination at a single common depot, then the RSP is
equivalent to the DARP. The DARP is known to be NP-hard
because it generalizes the Traveling Salesman Problem [15].
Having multiple vehicle origins and destinations does not
lose generality, thus the RSP is NP-hard.

Relation to Ridehailing. We make the following distinc-
tion. Ridehailing vehicles, as opposed to ridesharing ve-
hicles, have no late windows and no destinations of their
own. These “taxis” can be modeled in the RSP by giving
them infinite late windows and some imaginary destination.
Ridesharing is clearly more general. In preliminary tests,
we found that taxis can double the number of matches over
ridesharing vehicles because they can continually serve re-
quests. Hence, all our benchmarks in Section 5 use taxis.

2.3 Related Work
DARP Benchmarks. Many benchmarks exist for the
DARP [28, 30, 19], but they cannot be adapted to the RSP
as discussed in Section 1. First, the RSP and DARP operate
on different graphs. In the DARP, the graph is complete and
for n customers there are totally 2n+ 2 nodes. These nodes
represent all customer pickups and dropoffs, and include two
extra nodes for an “origin depot” and “destination depot”.
A weighted edge exists for each node pair. All weights are
given and can represent distance, time, or some other met-
ric. Each vehicle route (path through the graph) must begin
from the origin depot and end at the destination depot. In
the RSP, the graph is not complete. Each node maps to a
physical location on a road network. A path through this
graph corresponds to a physical route through the road net-
work. The number of nodes depends on the size of the road
network and the mapping method. An edge exists between
a pair of nodes only if there is a physical road segment that
connects them without passing through other nodes. Edge
weights represent distance and can be converted to time if
the travel speed along the road segment is known.

Second, the RSP is online in practice. DARP requests
are usually known in advance [15] whereas RSP requests ar-
rive continuously throughout the day. Some DARP methods
may be used on the RSP, but they must be adapted for road
networks and for the online scenario. To our knowledge, two
DARP methods have presently been tried on the RSP. We
point them out in Section 3.
Comparison Studies. Some small-scale comparison stud-
ies exist. One study compares three RSP strategies on a
simulation of the Seoul road network [22] using 600 vehicles
and a customer request rate of around 1.3 requests per sec-
ond. Another study [14] uses up to 500 vehicles and a rate
of around 5.6 requests per second on simulations of the New
York City and Chicago road networks. Our evaluation in
Section 6 adds to existing comparison studies by evaluating
more algorithms and at real-world scale.
Experimental Platforms. Some platforms exist for test-
ing logistics and other road network problems. In [4], a sim-
ulator is presented that can model millions of agents over a
large range of mobility decisions. Similarly, in [23] a traffic
simulator is presented to investigate vehicle routing choices.
In [39], a specialized platform is designed to test algorithms
for pickup-and-delivery problems, and in [8], a platform for
generating moving objects on a road network is introduced.
With modification, some of these platforms may support
evaluating RSP algorithms. Our platform is designed specif-
ically for ridesharing by including components and routines
common to ridesharing algorithms.

3. RIDESHARING ALGORITHMS
In this section, we discuss an exact algorithm for the of-

fline problem and several online algorithms. We present our
evaluations on all algorithms in Section 6 using the system
and benchmarks described later.

3.1 Branch-and-Bound
Branch-and-Bound (BB) [26] is a general technique for

solving mixed-integer linear programs. It has been used for
the DARP [15] and can be directly applied to the offline
RSP. The RSP can be formalized as an integer minimization
program in order to use BB.

Formalization. An integer-based labeling scheme is used
to formulate the program. Let m be the number of vehicles
and n the number of customers. Now the vehicles can be
labeled from 1 to m, and the customers from 1 to n, to
form two sets of integer labels M and N, respectively. Using
these sets, the origins and destinations of the customers and
vehicles can be labeled. For each vehicle with label k where
k ∈ M, its origin can also be labeled k, and its destination
can be labeled m+k. All the vehicle origin labels thus form
the set Mo = {1 . . .m}, and all the vehicle destination labels
form the set Md = {m + 1 . . . 2m}. In a similar manner,
for each customer with label r where r ∈ N, its origin and
destination can be labeled to produce the set of all customer
origin labels No = {2m + 1 . . . 2m + n} and the set of all
customer destination labels Nd = {2m+n+ 1 . . . 2m+ 2n}.
Now, the RSP is formalized as the optimization problem

Minimize
∑
k∈M

∑
i∈V

∑
j∈V

cijx
k
ij , i 6= j (2)

where V = No ∪Nd ∪ {k, k+m} is the union of all possible
origins and destinations that vehicle k can visit, cij is the
shortest-path cost from the stops represented by i and j,
and xkij is a binary decision variable equal to 1 if k travels
from stop i directly to stop j in its route, and 0 otherwise.



Table 2: Ridesharing algorithms. Complexity is written in terms of the customer insertion cost cin. For simple
insertion, cin = O(s3 × csp) where s is schedule length and csp is the cost of finding one shortest path. Areas:
OR=Operations Research; DB=Database; TR=Transportation; AI=Artificial Intelligence.

Algorithm Area Type Method Complexity (n customers, m vehicles)

Branch-and-Bound (BB) [15] OR - Exact O(2

(
m×(2n+2)2

)
)

Nearest Neighbor (NN) [22] TR Search Heuristic O(n(m× cin + m log m))
Greedy Insertion (GR) [21, 27, 22] DB, TR Search Heuristic O(n(m× cin))
Greedy Kinetic Tree (KT) [20] DB Search Heuristic O(n(ms!× csp))
Bilateral Arrangement (BA) [14] DB Search Heuristic O(n(m× cin))
Simulated Annealing (SA) [22] TR Join Metaheur. O(n(PTm× cin)), P = perturbations, T = temperatures
GRASP (GP) [34] AI Join Metaheur. O(g(mn2 + h)× cin), g = initial solutions, h = improvement iters.
Trip-Vehicle Grouping (TG) [6] AI Join Exact O((n2 + mn + m

∑t
i=1

(n
i

)
)× cin), T= maximum trip size

Constraints. Equation 2 is subject to constraints on the

routes (Section 2.2) including that each served customer
must be served by the same vehicle, and that each vehi-
cle must begin at its origin and end at its destination. The
labeling scheme allows these constraints to be generally ex-
pressible, as demonstrated in [15].
Branch-and-Bound. A search tree is used to explore so-
lutions to the above formalization. The search tree works
by listing solutions to “relaxed” problems, where the integer
constraint on the xkij variables is removed (but they are still
bounded by 0 and 1). Each node in the tree represents one
such solution, and different solutions are obtained by fixing
certain variables to be 0 or 1 for specific values of i, j and k.
Each node has a cost equal to the value of the solution given
by Equation 2. The tree is searched as it is constructed.

To initialize the tree, the root node is constructed by solv-
ing the relaxed problem, where 0 ≤ xkij ≤ 1 for all i, j, and
k, using simplex [32] or other methods. The cost of this so-
lution establishes the lower bound on the minimum cost by
nature of being optimal. If this solution is already integer
(all variables are integer), it is the optimal solution to the
original problem and we are done. Otherwise, the rest of
the tree is iteratively searched and constructed as follows.
(1) Branch. Create two child nodes for every node that
represents a non-integer solution (in the first iteration, there
is only the root node). Each child takes the same relaxed
problem as its parent, except randomly select specific values
for i, j and k and set xkij := 0 for one child, and xkij := 1 for
the other. Now both child nodes represent two new relaxed
problems, each with one less binary variable.
(2) Bound. Solve each new relaxed problem to obtain new
solutions. For each new solution:
• If the solution is non-integer and there is no current

upper bound or its cost is below the bound, take its
cost to be the new upper bound, and then follow (1)
to branch the node; otherwise prune the node.
• If the solution is integer, then if there is no current

incumbent solution, or if its cost beats the current in-
cumbent, it becomes the new incumbent and no longer
needs to be branched; otherwise, prune the node.

When no more nodes are left to be branched, then the final
incumbent is the optimal integer solution.

The worst-case complexity of Branch-and-Bound is expo-
nential. In this case, all nodes are feasible and no nodes
are pruned. There are m(2n + 2)2 binary variables (num-
ber of vehicles multiplied number of i, j pairs), each with

two possible values; hence the complexity is O(2(m(2n+2)2)).
The exponential complexity means only small instances are
solvable within reasonable time.

3.2 Online Algorithms
Algorithms for the online RSP can be classified as search-

based or join-based. Both kinds depend on candidates fil-
tering and customer insertion. Candidates filtering prunes

vehicles that cannot feasibly serve a given customer while
customer insertion best positions a customer’s stops into an
existing vehicle’s schedule. We discuss these first, then dis-
cuss search and join-based algorithms.
Candidates Filtering. For vehicle k traveling at speed
νk, dkmax is the maximum distance that this vehicle can be
from ro for it to feasibly serve customer r because of the late
time lr. Let t be the current time. The duration tmax =
lr − t gives the maximum that the customer can be served
within. Now let tmin be the direct travel time between ro
and rd at the vehicle’s speed. From the time difference, we
can compute dkmax = νk (tmax − tmin). If dkmax < 0, then
vehicle k cannot feasibly serve this customer. Using dkmax,
the candidates filter can be defined as a predicate

Pud(k) :=
(
ud(kgps, ro) ≤ dkmax

)
,

where ud(u, v) gives Euclidean distance between u and v and
kgps gives the current location of vehicle k. Thus given the
set of all vehicles M , the candidates set Kcands is given by

Kcands = {k ∈M | Pud(k) is true}.
More complex filters try to return those most likely to be
the match. For example, [27] introduces a specialized grid
index to support filtering on both rd and ro, [37] develops a
three-tier cluster-based index to support approximate filter-
ing using stored distances, and [38] uses pre-sorted distances
to prune vehicles above a certain distance bound.
Customer Insertion. For customer r and vehicle k, a
minimum-cost augmented schedule S+ can be formed by
inserting ro and rd into k’s current schedule S, expressed as

S+ = arg min
S′∈P(S∪{ro,rd})

C(S′, k) (3)

where P(S∪{ro, rd}) lists all permutations of the new sched-
ule that obey the precedence constraint. Finding S+ is
equivalent to solving the Traveling Salesman Problem with
Precedence Constraints [31], known to be NP-hard.

An exhaustive insertion method lists every (s!/2s) valid
schedule permutation for the schedule with length s, com-
puting the cost of each permutation and returning the one
with least cost. Each C(S′, k) requires finding s−1 shortest-
paths (Equation 1), so the total complexity is O(s!/2s ×
(s− 1) csp) = O(s! × csp) for csp cost of one shortest path.
This method can find the exact least-cost schedule because
it reorders existing stops, but it is expensive when s becomes
large and there are many augmented schedules to compute.

Alternatively, a simple insertion method achieves polyno-
mial time complexity by fixing the existing stops instead
of allowing them to reorder, thereby computing only O(s2)
permutations. The total complexity for simple insertion is
thus O(s2 × (s− 1) csp) = O(s3 × csp).

To speed up insertion, time window and capacity con-
straints can be used to prune infeasible permutations, re-
ducing the size of P. In [20], a kinetic tree is used to speed



up exhaustive insertion, while in [21, 27, 33, 38], methods
for simple insertion are developed. These methods guaran-
tee S+ will be feasible but not necessarily minimum cost.

3.2.1 Search Algorithms
Search-based algorithms [38, 14, 27, 20] (Algorithm 1)

use vehicle selection to assign customers sequentially as they
come online. The goal is to match the best vehicle k∗ with a
given customer r, depending on the decision conditions. The
procedure usually couples customer insertion with vehicle
search because most search algorithms depend on computing
augmented schedules. After k∗ is found, its route is then
adjusted to serve the customer. Now, let

Pmat(k) := (true if decision conditions) (4)

be a predicate defining conditions for a match. For a given
set of vehicle candidates Kcands, vehicle selection returns
k∗ ∈ Kcands given by the relational expression

k∗ = σPmat(Kcands).

The challenge is how to design the decision conditions in
Equation 4 towards the RSP’s cost minimization objective
while evaluating Pmat online, with no information about fu-
ture vehicles. We are aware of four heuristic approaches.
We first discuss a distance-based method, then introduce
two cost-based greedy algorithms, and finally discuss an ap-
proach that uses a replace heuristic to try to improve quality.
Nearest Neighbor. Nearest Neighbor (NN) [22] uses Eu-
clidean distance (ud) as a heuristic. The predicates

Pnear(k) :=

(
true if k = arg min

k∈Kcands

ud(kgps, ro)

)
,

Pmat(k) := (Pnear(k) ∧ (k is valid)) ,

express the decision conditions, where predicate Pnear is true
if k is the nearest vehicle, and Pmat is true only if k is also
valid for the customer, otherwise the problem constraints
will not be satisfied. A priority queue can be used to rank
each vehicle k by ud from its current location kgps to cus-
tomer origin ro. The complexity isO(m logm) form vehicles
as there are m number of O(1) distance computations, and
queue insertion is O(logm). Vehicles can then be accessed
from nearest-first and checked if valid, and the first valid
vehicle can be returned as the match.

Vehicle k is valid if the route through the augmented
schedule after inserting ro and rd satisfies the problem con-
straints. In the worst case, no vehicles are valid. Test-
ing one vehicle requires m × cin effort for the m vehicles
and cin complexity of the insertion method. The worst-case
complexity is this plus the cost of ranking the vehicles, or
O(m× cin +m logm), then multiplied n for all customers.
Greedy Insertion. Greedy Insertion (GR) [21, 27, 22] uses
a more sophisticated cost heuristic to improve quality. The
heuristic can be expressed as

Pgreedy(k) :=

(
true if k = arg min

k∈Kcands

∆cost

)
,

Pmat(k) := (Pgreedy(k) ∧ (k is valid)) ,

where ∆cost = C(S+, k)−C(S, k) is the cost increase, giving
the difference between the cost of the augmented schedule
S+ and the current schedule S. Customer r can be inserted
into each vehicle and ∆cost can be computed while remem-
bering the best one. Vehicle validity can be checked at the
same time because the route for k is also computed while
computing C(S+, k), and this route can be checked against

Search Algorithm

Given: Set of Vehicles M
Input: Customer r
Output: Vehicle k∗, Schedule S+

1: Kcands = FilterCandidates(r,M)
2: k∗ = VehicleSelection(r,Kcands)
3: S+ = CustomerInsert(r, k∗)
4: return k∗, S+

Algorithm 1: Search Algorithm.

constraints. One customer insertion is needed to find S+,
so total complexity is O(cin) multiplied by mn for all the m
vehicles and n customers. This complexity beats NN by an
(m logm) term, but the bound is tighter on GR because it
must always check all the vehicles in Kcands.
Kinetic Tree. To improve quality, Kinetic Tree (KT) [20]
uses exhaustive instead of simple insertion for computing
∆cost during evaluation of Pgreedy. To speed up insertion,
a kinetic tree is used to remember only the valid schedules
for a vehicle by pruning invalid ones from the tree. In this
way, only the feasible subset of all possible schedules need
to be considered. But in the worst case, this method still
computes all insertion possibilities and thus has the same
complexity as exhaustive insertion, O(s! × csp) for one ve-
hicle. The advantage is KT can find the exact least-cost
feasible schedule per vehicle because it can reorder existing
stops, at the expense of exponential complexity.
Bilateral Arrangement Bilateral Arrangement (BA) [14]
adds a replace procedure to improve quality. To prepare, the
algorithm batches customers, then lists the valid candidate
vehicles per customer. After this preparation step, for each
customer r in the batch, it finds the greedy vehicle k∗ that
makes Pgreedy(k∗) true. If this vehicle is already valid, it
accepts the vehicle immediately as the match. Otherwise,
it tries to replace one unserved customer from the vehicle
with r, accepting the replacement if the vehicle now becomes
valid. The complexity is the same as GR.

By removing an existing customer, a vehicle may gain
enough time and capacity to serve r. Note that as the steps
are performed on the customers sequentially, vehicle sched-
ules may change as customers are assigned. Thus a vehicle
that was valid for r after the preparation step can become
invalid later on, hence the validity check.

3.2.2 Join Algorithms
Join-based algorithms [34, 22, 6] execute on sets of cus-

tomers, aiming to group customers by vehicles. They return
sets of assignments and schedules for the vehicles. These
algorithms wait for a certain period in order to batch cus-
tomers into set R, then assign these customers all at once.
These algorithms may achieve better matches than search
algorithms because they consider multiple customers at a
time. However, vehicle join is computationally more expen-
sive. Given a set of candidates Kcands, vehicle join returns
a set of assignments A given by the relational expression

A = R 1Pmat Kcands, (5)

where a ∈ A is a relational tuple (k∗, r) matching customer r
to vehicle k∗. As with search algorithms, designing the deci-
sion conditions for Pmat is the main challenge, but the result
of joining one customer r ∈ R with one vehicle k ∈ Kcands

will affect joining other customers because of the feasibility
constraints (e.g. capacity). Thus, a simple predicate ap-
plied on all customers in R cannot ensure that the results
will meet the constraints, and most approaches aim to di-
rectly return results of the join (directly return A).



Initialize-Improve Framework

Given: Set of Vehicle Candidates Kcands

Input: Set of Customers R
Output: Assignments A, Schedules S

1: S = {} // empty schedules set
Initialize

2: Single-solution: initialize A
3: Population-based: initialize set of assignments A

Improve
4: repeat
5: Single-solution: refine A
6: Population-based: refine all A ∈ A
7: until acceptance criteria is met
8: A∗ ← best A, S ← schedules from A∗

9: return A∗, S

Algorithm 2: Initialize-Improve Framework.

Grouping Framework

Given: Set of Vehicle Candidates Kcands

Input: Set of Customers R
Output: Assignments A, Schedules S

1: S = {} // empty schedules set
Group

2: Form subsets of customers in R
Assign

3: Assign vehicles in Kcands to each subset
4: A← individual assignments, S ← schedules from A
5: return A, S

Algorithm 3: Grouping Framework.

We know of three such approaches. We first discuss two
metaheuristics that take a set of initial assignments obtained
from a heuristic method, then try to improve the assign-
ments using additional procedures until acceptance criteria
are met (Algorithm 2). We call this the initialize-improve
framework. The first of these methods is a single-solution
method. It uses one initial set of assignments, then contin-
ually improves this set. The second is population-based.
It uses several initial sets of assignments, improves each
one, then finally selects the best set. Other general single-
solution and population-based metaheuristics for optimiza-
tion problems [17] may also be possible, but we focus on the
two developed specifically for the RSP in current literature.

We then discuss a grouping method. Grouping algorithms
divide customers into subsets, then assign vehicles to each of
the subsets. A vehicle assigned to a subset will go on to serve
all the customers in that subset. Algorithm 3 shows the ba-
sic framework for these approaches. We know of two specific
algorithms. In [14], a grouping-based bilateral arrangement
algorithm is developed, and this is shown to outperform a
grouping-based greedy algorithm. However its performance
is similar to regular BA, possibly because it still uses BA as
the underlying assignment method. Hence we focus on [6]
that proposes an entirely different approach.

Simulated Annealing. Simulated Annealing (SA) is a
single-solution metaheuristic for general optimization prob-
lems. It has been used for the DARP in [7] and for the
RSP in [22]. Its defining feature is its ability to temporarily
accept worse local decisions in order to escape local optima:
(1) Initialize. Assign a random valid vehicle to each r ∈ R.
(2) Improve. Perform P “perturbations” for a number of
T “temperatures”. For each perturbation, select a random
customer, then reassign it to a different valid vehicle and
use customer insertion to adjust the route. If the route costs
are less than before reassignment, then adjust the old and
new vehicles to keep the new assignment. Otherwise if the
route costs are greater, then keep it with some probability

proportional to the current temperature, usually efT where
f is some tunable value [17].

The parameters can be tuned to balance quality with
computation speed. Greater T and P may improve qual-
ity because more iterations of step 2 are performed, but at
the expense of running time. Larger f may reduce quality
because more worse decisions will be accepted (known as
hill-climbing), but the search can be wider because many
solutions are considered that otherwise would not be. Com-
plexity of SA is worse than GR by a factor of PT because
of the additional customer insertions from step 2.

GRASP. The Greedy Randomized Adaptive Search Pro-
cedure (GRASP) metaheuristic is also a general technique
for solving optimization problems. It has been used for the
DARP in [18] and for the RSP in [34]. As a population-based
method, its defining feature is “adaptive” construction of di-
verse initial solutions in order to widely explore the solution
space [17]. The technique performs the following steps for
some maximum number of iterations. At each iteration,
(1) Initialize. Perform the following until all customers are
assigned or no more vehicles are available.

1. Randomly select a previously not selected vehicle k.
For each r ∈ R where k is a candidate, use customer in-
sertion to find the augmented schedule cost C(S+, k).

2. Select one customer with probability inversely pro-
portional to its cost (known as roulette-wheel selec-
tion [25]) and make the assignment.

3. Recompute costs for the other customers, and go back
to step 2 unless no more customers can be assigned to
vehicle k due to constraints. Then return to step 1.

(2) Improve. Apply the following operations to the solution
to generate three “neighboring” solutions.
• Replace a random assigned customer from some vehi-

cle k with a random unassigned customer (similar to
replace operation in BA).
• Swap an assignment from some vehicle k1 with an as-

signment from a different vehicle k2.
• Rearrange a customer origin or destination in some

vehicle k’s schedule to come after the next origin or
destination in the sequence.

From these new solutions, choose the least-cost feasible solu-
tion and keep improving it until no improvement is possible,
or a maximum number of iterations is reached.

By using multiple initial solutions, GRASP aims to un-
cover many local minima so the global one can ultimately be
chosen. The quality depends on diversity of the initial solu-
tions and usefulness of the improvement operations. In the
worst case, all customers are feasible for every vehicle, and
the complexity is proportional to mn2 customer insertions
due to the recomputations in step 3 of initialization.

Trip-Vehicle Grouping. Trip-Vehicle Grouping (TG) [6]
aims to achieve high quality assignments by optimally as-
signing vehicles to shareable groups of customers called trips.
The challenges are forming the trips and assigning vehicles.
(1) Group. To find trips,

1. For each pair (r, k) ∈ R×Kcands, r ∈ R, k ∈ Kcands, if
S+ formed by inserting the customer into k’s schedule
is valid, then keep the pair as a trip of size 1.

2. For each pair (r1, r2) ∈ R × R, if a vehicle can serve
the pair, keep the pair as a trip of size 2.

3. Form trips of size T , until T equals maximum vehicle
capacity, by combining trips of size 1 to form more
trips of size 2, and then combining customers from



TABLE nodes(id, lng, lat)
TABLE vehicles(id, origin, destination, early, late, load, queued, status, route, 
last_visited_node, next_node_distance, schedule)
TABLE customers(id, origin, destination, early, late, load, status, assignedTo)
TABLE stops(owner, location, type, early, late, visitedAt)

TABLE nodes(id, lng, lat)
TABLE vehicles(id, origin, destination, early, late, load, queued, status, route, 
last_visited_node, next_node_distance, schedule)
TABLE customers(id, origin, destination, early, late, load, status, assignedTo)
TABLE stops(owner, location, type, early, late, visitedAt)

Ground-Truth Simulation State

Cargo
Initialize
while (active):
  Move vehicles
  Handle pickups
  Handle dropoffs
  Log to disk
  Sleep 1 sec.

RSAlgorithm
while (active):
  listen:
    for each vehicle: handle_vehicle
    for each customer: handle_customer
    match:
      // Match logic...
   assign(...)
    Sleep until next batch

Solution File

Thread 1 Thread 2

Road Network &
Problem Instance

Figure 2: Cargo architecture.

trips of size T − 1 to form trips of size T . If a vehicle
can serve all the customers in a trip, keep the trip.

(2) Assign. Solve:

Minimize
∑

(i,j)∈E

cijxij +
∑
r∈R

ckoyr (6)

to minimize sum of costs across assignments, subject to the
problem constraints. Set E contains all possible edges be-
tween vehicles in Kcands and trips. An edge is formed be-
tween vehicle i and trip j if i can feasibly serve all requests
in j. Cost cij is the travel distance of the best route of i in
order to serve all the customers. This route can be found
using exhaustive insertion or other means. Variable xij is
a binary variable equal to 1 if vehicle i serves trip j, and
0 otherwise. Constant cko represents a cost penalty of not
serving a request. The binary variable yr is 1 if customer r
is served, and 0 otherwise.

4. CARGO ARCHITECTURE
Cargo is a multi-threaded simulation system, shown in

Figure 2, that aims to simplify the implemention of rideshar-
ing algorithms. When simulation begins, a user-specified
problem instance is loaded into an in-memory database. All
customers and vehicles involved in the simulation are also
loaded at this time, set to initial states.

Cargo. The main component maintains the problem in-
stance and road network. Simulation progress is written to
disk at each step for offline analysis. When simulation ends,
statistics of the simulation are written into a small, uniform
text file that can be used to compare algorithm performance.

Vehicle Motion. Vehicle motion is simulated by incre-
menting vehicle progress along their routes according to
their speeds, and by updating positions (occupied nodes)
when new nodes are reached. One SQL statement is used
to bulk-update all vehicles. When a vehicle moves to a new
location, the event is handled accordingly. Ridesharing ve-
hicles are deactivated after they arrive at their own desti-
nation. Taxis discussed in Section 2.2 standby at their last
location until given an assignment or the simulation ends.

Vehicle speed is assumed to be constant, thus travel times
in the road network are static. The effects between travel
times and ridesharing are not well known. Ridesharing may
improve travel times by alleviating traffic congestion through
sharing similar trips. But it may also worsen travel times
by disturbing normal traffic flow and by increasing traffic
as vehicles cruise for new assignments [3]. Capturing these
effects in a simulation is challenging. As none of the algo-
rithms in Section 3 are traffic-aware, we will leave studying
dynamic travel times as future work.

RSAlgorithm Greedy Insertion (GR)

1: function handle vehicle(k):
2: if k not in index then
3: Add k to the index
4: Update index with k’s current position

5: function handle customer(r):
6: Kcands ← FilterCandidates using the index
7: k∗ ← null, C∗ ←∞, ω∗ ← {}, S∗ ← {}

Perform vehicle selection procedure:
8: for k ∈ Kcands do
9: S+ ← CustomerInsert(r, k)

10: if C(S+, k) < C∗ and S+ is valid then
11: k∗ ← k,C∗ ← C(S+, k), S∗ ← S+

12: ω∗ ←shortest route through S∗

13: Assign(r, k, ω∗, S∗)

Algorithm 4: Greedy Insertion (GR) with index.

Table 3: Road network properties.

Parameter Manhattan Beijing Chengdu
Nodes 12,320 351,290 33,609
Edges 31,444 743,822 73,854
Area (km2) 59 876 643
Total edge length (km) 1,800 17,158 5,117
Road density 30.51 19.59 7.96
Classification dense semi-dense sparse

RSAlgorithm. The RSAlgorithm component represents a
base ridesharing algorithm. The included functions for users
to implement their own algorithms are sufficient for a wide
range of ridesharing algorithms. The main functions are:
• listen() — Polls for active vehicles and waiting cus-

tomers at a configurable interval, storing them locally.
• handle customer(customer) — Executed automat-

ically on every customer that is polled via listen().
• handle vehicle(vehicle) — Executed automatically

on every vehicle that is polled via listen().
• match() — Executed at the end of every listen()

and can be used for join-based assignment.
Algorithm 4 shows an example of the greedy algorithm

in [27] using RSAlgorithm. This algorithm demonstrates
using a specialized index to perform candidates filtering.
Assign Mode. An assign function updates and synchro-
nizes the database with new assignments, routes, and sched-
ules. Synchronization is needed due to match latency that
equals the time between when a vehicle’s state is first cap-
tured to perform assignment and when the assignment is
returned to the vehicle. A new assignment could be inval-
idated by vehicle motion during this time. For example,
an assignment might instruct a vehicle to visit a node it
has already passed. Cargo supports two modes. In strict
mode, an assignment is rejected outright if it cannot be syn-
chronized with the vehicle’s current state. But in non-strict
mode, it is accepted if the vehicle can be re-routed to acco-
modate the assignment. In preliminary tests, we found that
the extra distance due to re-routing is more than offset by
extra matches (avoiding the unmatched customers penalty).
Hence we use non-strict mode in all our experiments.
Spatial Indexes. A G-tree [42] is provided for shortest-
path computations, pre-built for each road network in our
benchmark and loaded during initiation. A grid index is also
provided for quickly filtering vehicles by Euclidean distance
as explained in Section 3.2. Users can optionally bring their
own spatial index, such as the ones in [27] and [37].

5. BENCHMARK
5.1 Road Networks

We used Manhattan, Beijing, and Chengdu as represen-
tative road networks in our benchmarks, listed in Table 3.



Their different sizes and densities (computed as total edge
length divided by area) affect the performance of shortest-
path algorithms that ridesharing algorithms rely on. Long
edges have been split so that no edge is longer than 100
meters. Each network is a directed graph.

5.2 Problem Instances
Our problem instances aimed to reflect real-world scenar-

ios as to give practical insight into algorithm performance.
Toward this aim, the number of vehicles, scale of customes,
their spatial distributions, and rate of customer requests
were most important. We obtained datasets of physical taxi
and DiDi trips and used them to generate the customers and
vehicles so that spatial distributions and request rates are
real. Then when customers were assigned to vehicles dur-
ing evaluation, real-time locations of vehicles were simulated
based on routes and speeds. Our instances are public [1].
Customers. For each road network, we extracted all taxi
trips occurring in the sampling period from 6:00–6:30PM on
an arbitrary day on that network. For Beijing instances, we
obtained 17,467 trips, about 9.70 requests per second. For
Chengdu and Manhattan instances, we obtained 8,922 and
5,033 trips, respectively, or about 4.96 and 2.80 requests per
second. The requests rate can vary at other times, for ex-
ample early morning hours or around sporting events. To
model these changes, we removed or packed more real trips
into the 30-minute period to simulate customer scales of
0.5x, 2.0x, and 4.0x for the Beijing instances. These scale
factors multiplied the trip sampling period. For each new
period, all customers in that period were packed into 30 min-
utes, yielding rates of roughly half, double, and quadruple
the real requests rate. A small instance where we manually
selected 8 customers and 2 vehicles is included to support
finding the offline optimal.

Vehicles. All instances use “taxi” vehicles due to better
performance as explained in Section 2.2. Initial vehicle po-
sitions were sampled from the trip datasets starting from
6:00PM and moving backwards in time until the desired
number of vehicles was reached. Each sampled trip origin
was used as the initial position of one vehicle. We varied
the number of vehicles from 1,000–50,000 to cover real-world
scale and beyond. Some studies place the real-world number
of ridesharing vehicles to be 13,000 in certain cities [13]. In
comparison, most studies use between 100–10,000 vehicles.
Capacity varies from 1–9 to cover small passenger vehicles
to minibuses. Note that Cargo allows even a 1-capacity taxi
to serve an arbitrary number of customers (have long sched-
ules) by alternating pickups and dropoffs.

Time Windows. For each customer r, its early bound
was its trip request time in the raw data, relative to 6PM,
and its late bound was the shortest-path time between ro
and rd, using vehicle speed, plus a delay of 6, 12, or 24
minutes. Taxis in the real world work the entire day instead
of appearing throughout the day, thus all taxis had 0 as their
early bounds so they appear at the beginning of simulation.

6. EXPERIMENTS
We evaluated the algorithms in Section 3 using Cargo and

our benchmarks. We added BA+, a variation of BA with
two additional quality heuristics: (1) it only tries replace-
ment if the replacing customer has a longer trip than the
customer being replaced; and (2) it only accepts a replace-
ment if the new route cost is less than before. For SA, we
used SA100 and SA50 with hill-climbing factors of f = 1.0

Table 4: Parameters and variables (defaults in bold).

Parameter Value
Grid dimensions 100× 100 cells
LRU cache size 1 million shortest paths
Simulation duration 30 min
Road network Manhattan, Beijing, Chengdu
Vehicle speed 10 meters per second
Vehicle capacity 1, 3, 6, 9
# of vehicles 1k, 5k, 10k, ..., 50k
Cust. scale factors 0.5x, 1.0x, 2.0x, 4.0x
Delay tolerance 6 min, 12 min, 24 min

and f = 0.5, respectively, to test usefulness of hill-climbing.
For GRASP, we used GP4 and GP16 with 4 and 16 initial
solutions, respectively. Offline BB was used to get the opti-
mal solution to the small instance. Table 4 summarizes our
experimental parameters.

Implementation Details.
• Vehicle speed was 10 meters per second (36 kph).
• A 100 × 100 grid index was used to filter vehicles, as ex-

plained in Section 4. Each cell was roughly 300 sq. meters.
• For shortest-paths, we used a G-tree with fanout 4.
• A least-recently used (LRU) cache with 1 million elements

was used to avoid repeated shortest-path calculations, as
in [20]. All algorithms benefited from the cache.
• To mimic a real service guarantee, a matching period was

used. Customers not matched within 60 seconds of their
early bound were not tried again.
• Vehicles with schedules that were larger than 10 elements

were pruned for all algorithms. Much time was being
spent on these large-schedule vehicles. By doing this prun-
ing, the speed of all algorithms improved dramatically.
• All algorithms except KT and TG used simple insertion;

KT used kinetic trees while TG used exhaustive insertion
for arranging trips in a group.
• For SA100 and SA50 we used T = {5, 4...1} and P =

15, 000, found to be a good balance of quality and speed.
• For TG, the GNU Linear Programming Kit (GLPK)1 was

used. We allowed top 30 customers per vehicle in step (1)
and parallelized all steps as done in [6].

Runtime. Two runtime modes were used. In dynamic
mode, simulation is real-time (one simulated second equals
one real second). In static mode, Cargo waits until an algo-
rithm completes before stepping to the next time instance.
To be consistent, all algorithms executed with the same
30-second batch time. Specifically, search algorithms were
not executed continuously, but waited until the batch time.
Then, they executed sequentially on the batched customers.

Timeouts. A 30-second timeout was necessary for most
algorithms to achieve real-time in dynamic mode. It was
applied per customer for search algorithms and per batch
for join algorithms. For TG, step (1) was given 15 seconds
and the remaining time was allocated to the remaining steps.
Setting. All algorithms were implemented in C++11 and
compiled with the -O3 flag. Experiments were performed
on a 2.2 GHz 64-bit Intel Xeon E5-2630 CPU server ma-
chine running the Ubuntu 16.04 operating system. Most
algorithms used between 1–14 GB RAM depending on the
benchmark. Six threads were used for TG.
Metrics. We measured three metrics:
• Average customer handling time, in real milliseconds.
• Service rate, the ratio of served customers to total cus-

tomers (a rate of 1 indicates all customers were served).

1https://www.gnu.org/software/glpk
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Figure 3: Effect of capacity on various metrics. Search algorithms, static runtime.
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Figure 4: Effect of delay tolerance on various metrics. Search algorithms, static runtime.

• Distance savings (%), computed as 1− (z/z0), where

z =
∑
k∈M

(distance traveled by k) +
∑

r∈Nko

crord , (7)

and z0 =
∑
r∈N

crord . (8)

Quantity z represents the distance achieved by an algo-
rithm. It includes the distance traveled by all vehicles M
and penalty distances for unmatched customers Nko, as
explained in Section 2.2. The penalty distance for cus-
tomer r is the shortest-path length crord from ro to rd.
The penalty represents the real-world case where an un-
matched customer might elect to take a private vehicle
instead of ridesharing. Quantity z0 is the sum of all penal-
ties, representing the cost of no ridesharing. We call it the
base cost. With ridesharing, z can be less than z0 because
similar trips can be combined (see Example 2). If z > z0,
then savings is negative, indicating surplus distance.

6.1 Static Runtime Evaluations
We first evaluated candidates filtering and customer in-

sertion. Then static mode was used to evaluate the best
performance of the algorithms. We varied the number of
vehicles because it determines size of Kcands that can af-
fect performance of all algorithms. We also varied vehicle
capacity to evaluate different capacities used by practition-
ers. We omit figures for 9-capacity as no major differences
were observed compared to 6-capacity. For join algorithms
we varied the customer scale factor because it changes the
number of customers per batch and can affect performance.

6.1.1 Filtering and Insertion
As Table 5 shows, our chosen grid size of 100 × 100 cells

achieves the best time at good strength. Strength is com-
puted here as 1 − (m/M) where m is the number of candi-
dates returned by the filter, and M is the total number of
vehicles. Table 5 shows the number of candidates returned
by the filter was roughly linear with the filter distance dkmax.
Table 6 shows that customer insertion was generally an order
of magnitude slower than filtering. The time grew quadrat-
ically with schedule length because permutations increased,
and to perform insertion, each permutation requires multi-
ple shortest-path computations.

Table 5: Filtering (dkmax = 1.8km) by various grid size.

Grid Cells (n2) n = 1 10 100 1,000 10,000
Avg. filter time (ms) 0.15 0.02 0.01 0.57 4.69
Strength 0% 81% 94% 96% 96%

Table 6: Filtering by various Euclidean distance dkmax.

dk
max (meters) 225 450 900 1800 3600 7200 14400

Strength 99% 99% 98% 94% 84% 55% 8%
# of cands. 15 36 108 279 804 2241 4621

Table 7: Insertion by various schedule lengths.

Sched. length 2 4 6 8 10
Avg. insertion time (ms) 0.42 1.78 3.94 6.40 9.68
# of permutations 1 6 15 28 45

6.1.2 Evaluation of Search Algorithms
Effect of Number of Vehicles. More vehicles caused
handling times to increase at all capacities, but had no effect
on service rate or distance savings beyond 5,000 vehicles
because search algorithms could already match all of the
customers at this level (Figure 3). Handling time increased
due to more vehicles in Kcands to evaluate.

Effect of Vehicle Capacity. At 3-capacity, all except
NN could achieve at least 30% distance savings (roughly
27,000 km) (Figure 3b). The savings are indistinguishable
due to all algorithms using the same greedy cost heuristic.
Handling time was about one magnitude higher compared
to 1-capacity, with a smaller effect for KT, while NN was
unchanged (Figure 3c). At 3-capacity, schedules became
longer, making customer insertion harder. But NN does not
rely on customer insertion and KT uses an index to perform
insertion. Notably, NN was faster than all algorithms by two
orders of magnitude. Service rate was generally unaffected
as 1-capacity was enough to achieve high rates.
Effect of Time Window. Wider time windows had a

small effect on service rate and distance except for BA (Fig-
ure 4). With wider windows, BA accepted more replace-
ments but could not reassign the displaced customers. As
more schedules became feasible, schedules that allowed more
travel were accepted and distance savings worsened. On the
other hand, BA+ did not experience these effects due to the
additional heuristics. Handling time generally increased as
there were more valid candidates to evaluate.
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Figure 5: Effect of capacity on various metrics. Join algorithms, static runtime.
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Figure 7: Effect of scale on various metrics. Join
algorithms, static runtime.

Takeaways. Excluding NN, (1) all search algorithms could
achieve 100% service rate and more than 30% distance sav-
ings; (2) but KT stands out due to best handling time;
(3) and simple insertion is acceptable as neither BA, BA+,
nor KT could improve distance savings. This result agrees
with [27] that the benefit from schedule reordering is small.
We did not find BA beating GR in terms of quality as in [14],
possibly because the greedy algorithms differed and they
used utility score while we used travel distance.

6.1.3 Evaluation of Join Algorithms
On most instances, TG took over 10 hours to run, hence

a TG-specific timeout of 10 minutes per batch was added to
keep times reasonable. For customer scale experiments, the

requests rate ranged from 4.86 to 36.39 customers per second
and the absolute number from 8,754 to 65,500 customers.

Effect of Number of Vehicles. Like search algorithms,
number of vehicles had slight effect beyond 5,000 except to
cause handling times to increase (Figures 5c and 6c) because
all algorithms already matched near 100% at this level (Fig-
ure 5a). In all cases, SA50 used less distance than SA100
because hill-climbing knocked SA100 out of good solutions.
The effect may diminish at higher P as there would be more
improvement opportunities, but the handling time would in-
crease. Also, GP4 achieved the same distances as GP16 but
at half the handling time. This result suggests the improve-
ment procedures were ineffective, as also observed in [34].
Replacement was not performed because with many vehi-
cles, a customer was difficult to be unassigned after initial-
ization, and swap rarely selected a valid vehicle due to many
candidates in a solution where only a portion are valid for
a given customer. Handling time increased for GPs and TG
due to larger Kcands, but not for SAs as they use random-
selection and do not evaluate all candidates. Different scales
altered the effects (Figures 7a, 7b, and 7c).

Effect of Customer Scale. Scale degraded TG and had a
nonlinear effect on GP and SA algorithms. Distance savings
by TG decreased as scale increased (Figure 7b) because it
ran against the timeout. Handling times for TG actually
decreased at larger scales as it had to process more cus-
tomers within the same time allotted by the timeout. For
GP and SA algorithms, larger scales caused the point at
which all customers could be matched to shift. For exam-
ple, at 2.0x this point was at 10,000 vehicles but at 4.0x
it shifted to 15,000 vehicles (Figure 7a). These algorithms
only saved distance before this shifting “saturation” point,
and handling times also peaked near the point (Figure 7c).

We try to explain these observations about the saturation
point. First, regarding service rate, the number of matches
for SA and GP algorithms depend on the number of vehi-
cles. For both algorithms, the number of matches is prede-
termined during the initialization phases as no assignments
are added in the improvement phases. If the number of vehi-
cles is too few, SA and GP algorithms may not fully initial-
ize the customers. The SAs loop through the customers and
look for a random feasible vehicle to be a match. Without



enough vehicles, some customers may not have any feasible
candidates and be unmatched. The GPs loop through the
vehicles and look for customers to add to each vehicle. The
number of matches is thus related to the number of vehi-
cles. At some m, all the customers can be initialized and
the service rate becomes 1.

Second, two competing factors appear to affect the dis-
tance savings. Consider the case where customers are ran-
domly distributed amongst m vehicles. If m is very large,
then the chance that two customers share one vehicle falls.
But if m is small, then not all customers may be served and
the unmatched penalty will be large. At some m, sharing is
maximized while the penalty is minimized and savings are
greatest. As both SA and GP depend on random selection,
this effect appears to a degree.

Third, we found that handling time worsened at the satu-
ration point due to longer schedules from many shared trips,
making customer insertion harder.

Effect of Vehicle Capacity. Capacity did not affect ser-
vice rate or handling time except for TG. Only TG took ad-
vantage of 3-capacity to save distance over 1-capacity (Fig-
ure 7b), but with time increases of about one order (Fig-
ure 7c). No other algorithms took advantage of capacity.

At 3-capacity, TG made 60% service rate but still achieved
20% distance savings compared to 30% for search algorithms.
Figure 7c shows the handling time was flat from hitting the
timeout. Thus given better hardware or more processing
time, TG may do better than search algorithms.
Effect of Time Window. As with search algorithms,

large time windows increased handling times of all algo-
rithms while worsening distance savings (Figure 6). As the
number of feasible candidates increases, SAs should require
more iterations to converge to a good solution, and the im-
provement procedures for GPs were still ineffective due to
the previously explained effects.

Takeaways. If hardware is powerful, (1) TG is recom-
mended because it can reliably save travel distance while SA
and GP algorithms are sensitive to the saturation point.
Otherwise, (2) SA50 is preferable over SA100 because it
makes slightly better solutions due to less hill-climbing, and
(3) GP4 is preferred over GP16 due to faster handling time.
We could not confirm that SA uses less distance (time) than
GR as in [22], possibly because that study used only 600 ve-
hicles and maximum 1.25 customers per second, making it
easier for SA to converge to a good solution.

6.2 Real-time Dynamic Evaluations
Dynamic runtime mode was used to characterize the real-

world performance of the algorithms. We varied number of
vehicles, capacity, and customer scale, all factors in the real
world. We additionally evaluated performance on Manhat-
tan and Chengdu road networks. We omitted BA, SA100
and GP16 based on previous results. We also omitted han-
dling times due to the presence of the dynamic runtime time-
outs. We show that algorithms mostly could not achieve
near their static mode performance.
Effect of Number of Vehicles. For NN, service rate re-
mained high at all numbers of vehicles but no distance sav-
ings could be achieved. For the other search algorithms,
service rate and distance savings both fell with increasing
vehicles. The decline was faster for GR and BA+ com-
pared to KT and accelerated at larger scales (Figures 10a
and 10b). From the static evaluations, handling time can

increase with more vehicles because Kcands increases. All
search algorithms (except NN) perform customer insertion
on each of the candidates, hence take longer when there are
more. But in dynamic mode, a long handling time causes the
matching rate to fall behind the requests rate. As a result, the
queue of customers waiting to be processed fills. After the
60-second matching period expires, customers drop, causing
service rate to suffer. Hence the matching rate should meet
or exceed the requests rate to ensure good service.

To elaborate, Figure 11 shows the queue size over time on
an instance using default parameters. The sawtooth pattern
for NN, GP4, and SA50 indicate they could match all cus-
tomers within each 30-second batch, explaining their ability
for high service rates. Out of the Pgreedy algorithms, KT
had the best queue behavior, explaining its ability to save
up to 30% travel distance (Figure 9a). For SA50 and GP4,
queue size oscillated between 300 and 600 customers because
the algorithms took fully 30 seconds allowed by the timeout
before returning results, in addition to the 30-second batch
time. The lag caused 60 seconds worth of customers to be
in the queue. For TG, the queue was nearly always full for
all instances, thus it could not achieve a good service rate
nor good distance savings.

Effects from the saturation point for SA50 and GP4 dis-
appeared because the timeouts limited the processing time.
Instead, GP4 experienced a “critical point” where service
level dropped dramatically. For example, this point was
30,000 vehicles at 3-capacity (Figure 8a). After this point,
GP4 could not initialize full solutions within the timeout
due to the expensive repeated fitness evaluations, hence it
returned only partial solutions.
Effect of Customer Scale. Algorithms could not meet the
higher request rates at larger scales. Only NN and SA could
maintain good service rates (Figure 10a). As scale increased,
the critical point for GP4 shifted to lower numbers. For
example, at 0.5x the critical point is beyond 50,000 vehicles,
but at 2.0x it is 5,000 vehicles.
Effect of Vehicle Capacity. Capacity had little effect
beyond 3 under dynamic runtime as under static runtime.
Effect of Time Window. Service rates for all algorithms

except NN and SA50 dropped with wider time windows (Fig-
ure 8b). Distance savings dropped dramatically for SA50
(Figure 9b). With wider time windows, more vehicles be-
come feasible, and the chance of randomly selecting the best
vehicle per customer becomes smaller. As SA50 depends on
random selection to form the initial solution, the chance of
forming a good initial solution drops. As it has no time
to perform many perturbations in dynamic made, it cannot
improve these initial assignments and distance suffers.
Performance on Road Networks. All algorithms could
make more matches and save more distance on Manhattan
than on the other two networks (Figures 8c and 9c), and
Beijing was the hardest. Customer scale appears to have
a stronger effect than road network density. Algorithms
achieved highest service rate and most distances savings
on dense Manhattan, but performed only slightly worse on
sparse Chengdu. Algorithms struggled the most on Beijing,
but when scale was reduced to 0.5x, then algorithms could
achieve better much service rates (Figure 10a).
Takeaways. Competitive analysis [35] is often used to char-
acterize online algorithms. In lieu of theoretical competitive
ratios, we ran the algorithms on a small instance against op-
timal BB. Table 8 shows the results (obtained after several
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Figure 8: Service rates by various factors. Real-time evaluations, dynamic runtime.
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Figure 10: Effect of scale on service rate and distance savings. Real-time evaluations, dynamic runtime.
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Table 8: Competitive ratios (lower is better).

NN GR KT BA+ SA50 GP4 TG BBAll BBOpt
Ratio 1.15 1.12 1.12 1.10 1.06 1.05 1.01 1.00 0.95
Time 2ms 2ms 28ms 1ms 1000ms 4ms 271ms >1hr >1hr

trials). The algorithm BBAll finds the optimal solution if all
customers must be matched while BBOpt finds the optimal
solution if this constraint is lifted (while applying penalties
for unmatched customers). Notably, TG was nearly optimal
because it aims to optimize groupings, but it could not take
into account future requests. Yet in real-time ridesharing,
fast algorithms are preferred. Thus, we recommend (1) NN
and SA for maximizing service rate; (2) KT for maximizing
distance savings; (3) and TG based on its competitiveness,
if the computational burden can be overcome.

7. CONCLUSION
This work develops a system for evaluating ridesharing al-

gorithms, proposes benchmarks to study these algorithms in
online real-time cases, and performs an evaluation covering
a wide range of real-world scenarios. The goal is to provide
standardized testing of these algorithms, currently lacking
due to the complex nature of the problem and difficulty in
evaluation. We also reveal key factors explaining algorithm
performance, then offer several recommendations and point
the direction for practitioners and algorithm designers.

We offer the following recommendations. For practition-
ers: (1) If maximizing matches is important, we recommend

NN or SA because they can meet the customer requests
rate in most cases. (2) If maximizing distance savings is im-
portant, we recommend KT. (3) We recommend deploying
3-capacity vehicles because current algorithms yield no ben-
efits from higher capacities. For algorithm designers: (4) Al-
gorithms that rely on schedule costs to make assignment de-
cisions may not meet the requests rate when there are more
than a few thousand vehicles. However, indexing the vehi-
cle schedules, for example with kinetic trees, can improve
the performance. Thus future algorithms could use cheaper
heuristics other than schedule cost, or use efficient schedule
indexing. (5) Random-selection takes too long to converge
to a good solution. Instead, selection should be guided ag-
gressively to the “best” vehicle, either through better selec-
tion bias or better improvement procedures. (6) Unless the
computational burden can be overcome, listing customer-
vehicle combinations, as in TG, should be avoided. Thus,
future algorithms could take advantage of these techniques:
cheap heuristic, schedules index, and guided selection to out-
perform the state-of-the-art. Existing studies focused on
static travel costs and it calls for traffic-aware methods that
consider realistic traffic in online ridesharing.
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