
Our Simulation ResultsOur Simulation Results

James Jie Pan, Guoliang Li, Juntao Hu

Ridesharing: Simulator, Benchmark, and Evaluation

Motivation

 a b c d e f g
a 1
b 1 4 2
c 4 2 5
d 2
e 2 6
f 5 6 2
g 2

ℰ =
origin dest. early late cap. load speed

Vehicle k a g 0 30 2 1
Customer r

1 d e 1 18 1
Customer r

2 d f 2 25 1

Customer r 1 , r 2

a

d

(house)

(house)

(house)

(market)

(office)

cb

e f

gg

🚗 🚹🚹
Road Network

𝒢 (𝒱, ℰ)

🚹 🚹

Vehicle k

 a b c d e f g
a 1
b 1 4 2
c 4 2 5
d 2
e 2 6
f 5 6 2
g 2

ℰ =
origin dest. early late cap. load speed

Vehicle k a g 0 30 2 1
Customer r

1 d e 1 18 1
Customer r

2 d f 2 25 1

Customer r 1 , r 2

a

d

(house)

(house)

(house)

(market)

(office)

cb

e f

gg

🚗 🚹🚹
Road Network

𝒢 (𝒱, ℰ)

🚹 🚹

Vehicle k

Cost = 23

 a b c d e f g
a 1
b 1 4 2
c 4 2 5
d 2
e 2 6
f 5 6 2
g 2

ℰ =
origin dest. early late cap. load speed

Vehicle k a g 0 30 2 1
Customer r

1 d e 1 18 1
Customer r

2 d f 2 25 1

Customer r 1 , r 2

a

d

(house)

(house)

(house)

(market)

(office)

cb

e f

gg

🚗 🚹🚹
Road Network

𝒢 (𝒱, ℰ)

🚹 🚹

Vehicle k

Cost = 27

Travel Separately
(No Ridesharing)

Travel Together
(With Ridesharing)

Customer-to-Vehicle Assignment Algorithms
An Exact Offline Method: Branch-and-Bound (BB) [Cor06]

and is shortest-path cost from to .

{1 , ... ,m ,m+1 , ... ,2 m ,2m+1 , ... ,2 m+n ,2m+n+1 , ... ,2m+2n}

M o M d N o N d

cij

Min. ∑
k∈M

∑
i∈V

∑
j∈V

cij x ij
k s.t. constraints,

1. Label vehicles , customers

2. Design origin/destination labels:

For... Origin is labeled... Destination is labeled...

Vehicle

Customer
k+mk∈M k

r∈N 2m+r 2m+n+r

M={1. . m} N={1. . n}

3. where

i jV =N o∪N d∪{k , k+m}

x
3 =1

Relaxed Solution
(Root)

x 1
=0 x

1 =1

x 2
=0 x

2 =1

x 3
=0

Incumbent

Non-optimal

New Incumbent

1. Relax the LP and
solve with simplex

2. Branch on a
decision variable

3. Bound against
incumbent

4. Repeat until no
more branches

Online Search-Based Algorithms: Assignment=σPred (Candidates)Assignment=σPred (Candidates)

For k∈Candidates ,
Pred (k)=(k is Nearest)
 ∧(k is valid)

Customer

Cand. 1

Cand. 2

Cand. 3

Cand. 4

Cand. 5

Nearest-Neighbor (NN) Greedy (GR), Kinetic Tree (KT)

For k∈Candidates,
Pred(k)=(k minimizes Cost)
 ∧(k is valid)

Cand. 1
(Nearest)

Cand. 2
(Least Cost)

Customer

Customer 1

Customer 2

Cand. 1

Instead of picking up
Customer 1...
Instead of picking up
Customer 1...

...Cand. 1 is re-routed to
pick up Customer 2
...Cand. 1 is re-routed to
pick up Customer 2

For k∈Candidates,
Pred (k)=(k minimizes Cost)
 ∧(k is valid, with Replace if necessary)

Bilateral Arrangement (BA)

Online Join-Based Algorithms: Assignments=Customers ⋈Pred CandidatesAssignments=Customers ⋈Pred Candidates

(old)

(new)

(old)

(new)

Simulated Annealing (SA)

Descend using random reassigns,
with chance of hill-climbing

T=1 T=2 T=3

T=6T=5T=4

Greedy Randomized Adaptive Search
Procedure (GRASP)

Descend through n randomized
solutions, then select the best one.
Descent procedures:

● Replace
● Swap
● Rearrange

S=1 S=2 S=3 S=4

Step 1:
RV-Edges

Step 2:
RR-Edges

Trip1

Trip2

Trip3

Trip4

Trip5

Trip-Vehicle Grouping (TG)

Step 3:
Form Trips

Step 4: Assign vehicles to trips via integer linear program

Example of six descent stages.

Example of four initial solutions.

= assignment = candidate vehicle = customer

Can ridesharing algorithms make high-quality
assignments under real-time constraint?

How can we characterize assignment
techniques?

How do we design a benchmark?

Our Ridesharing Simulator

Our Benchmark Problem Instances

Modularized Ridesharing Algorithms:

class YourAlgorithm : public RSAlgorithm {
 public:
 YourAlgorithm();

 /* Your code in these methods */
 virtual void handle_customer(const Customer &);
 virtual void handle_vehicle(const Vehicle &);
 virtual void end();
 virtual void listen();
}

WebGL Visualization with Live Updates:

Visit https://github.com/jamjpan/Cargo for sourcecode and examples

Three Road Networks:

Beijing (5th Ring), China

Chengdu (2nd Ring), China

Manhattan, USAOver One-Hundred Problem Instances at
https://github.com/jamjpan/Cargo_benchmark

Time

Q
ue

ue
 S

iz
e

NNNN

GP, SAGP, SA
KTKT

GR, BA, TGGR, BA, TG

Reason for Ridesharing

Number of Queued Customers Over Time, per Algorithm
Dynamic: All Algorithms For high service rate, matching rate should

meet or exceed the rate of requests.

● Potential for saving total travel distances, thereby
reducing overall fuel use and emissions

● Potential for reducing number of vehicles on the road

0 min 30 min

● The algorithms that achieved the highest service rates were
those that cleared the queue (Nearest Neighbor, Simulated
Annealing, and GRASP).

● Kinetic Tree saved more distance, achieved better service
rate, and cleared the queue faster than Greedy.

● Despite high service rate, Simulated Annealing and GRASP
did not perform enough descents to result in distance savings.

● Trip-Vehicle Grouping struggled to clear the queue and had
the lowest service rate.

