Motivation

Can ridesharing algorithms make high-quality
assignments under real-time constraint?

How can we characterize assignment
techniques?

How do we design a benchmark?

Reason for Ridesharing

Road Network

y \ G (V. & Customer 1[., 1."2
ajblcl[dle|f[g]| Vehicle k office) ((]
4 oy
b1 4 2
% _Jlel 4] 2] 15 > @_@ /(-:
—\[d 2 /
(house) (house)
el [2 6
IERERERE (e) f
\ J 2) (house)
origin | dest. | early [late | cap. | load | speed g
Vehicle k a g 0 30 | 2 1
Customer r, d e 1 18 (market)
Customer r, d f 2 25
Travel Separately Travel Together
(No Ridesharing) (With Ridesharing)

Cost =27 Cost=23«

=

* Potential for saving total travel distances, thereby
reducing overall fuel use and emissions

* Potential for reducing number of vehicles on the road

Customer-to-Vehicle Assignment Algorithms

An Exact Offline Method: Branch-and-Bound (BB) [coros] Relaxed Solution
(Root) 1. Relax the LP and

solve with simplex

1. Label vehicles M={1..m}, customers N={1..n|
2. Design origin/destination labels:

For... Origin is labeled... Destination is labeled... 2. Branch on a
Vehicle keM I k+m decision variable
Customer reN 2m+r 2m+n+r

3. Bound against

(1,....,m,m+1,..,2m,2m+1,...,2m+n,2m+n+1,...,2m+2n}

Incumbent
Mo Md No Nd
. A\ \ \ k . .
3. Min. kZ Z Z‘ c; X; S.t. constraints, where) 4. Repeat until no
M i . s N2
€M i€V jev | o New Incumbent . 9 more branches
V=N,UN,Ulk,k+m] and c; is shortest-path cost fromi toj.
Online Search-Based Algorithms: Assignment =0, ,(Candidates) @ = = assignment (@) = candidate venicle [l = customer
Nearest-Neighbor (NN) Greedy (GR), Kinetic Tree (KT) Bilateral Arrangement (BA)
e =1 - Customer1l
Instead of picking up |
xC.and. Z Customer 1...
© v
Cand. 1 Y Cand. 3 Customer 2
O n Xe
) 4 Customer Cand. 5 (new)
...Cand. 1 is re-routed to
pick up Customer 2
o e Cand. 4
For keCandidates, For ke Candidates, For ke Candidates,
Pred(k)=(k is Nearest) Pred(k)=(k minimizes Cost) Pred (k)=(k minimizes Cost)
A(k is valid) A(k is valid) A(k is valid, with Replace if necessary)
Online Join-Based Algorithms: Assignments=Customers M, ., Candidates Trip-Vehicle Grouping (TG)
: : Greedy Randomized Adaptive Search RV-Edges /2 s
Simulated Annealing (SA) Y -
Procedure (GRASP)
T:2 N o :3,, 4T) . S _yfu .\7&"‘/’,';\? L #): { oo H
SR I mﬁ"{ ﬁ@w\% mi4
‘”?‘“f 5 ¥ e %g‘i\m I 1 é{”/ = WLk
Al o T | N &5 -
: e | ekl 5 Form Trips B4
gty - TZE:‘;’ 25 = Example of four initial solutions. Trip1 ‘_,r:! Trip4 2 ‘H
2 R vy R nay = e | %% :
S padm 0 ek 2 e Descend through n randomized -= 0 =
e e .+ solutions, then select the best one. . W 5
Example of six descent stages. Descent procedures: . Trip2 3 Irip5 g .'
| | * Replace N I, alind)
Descend using random reassigns, . Swap Step 2: N e e E=e~f
. . _ . . R R' E ",
with chance of hill-climbing * Rearrange eSS Y a @

- - Step 4: Assign vehicles to trips via integer linear program
Our Simulation Results

Dynamic: All Algorithms

Ridesharing: Simulator, Benchmark, and Evaluation
James Jie Pan, Guoliang LI, Juntao Hu

Our Ridesharing Simulator

Thread 1 RSAlgorithm Thread 2

] o e o)

” ive): listen:
while (active): for each vehicle: handle_vehicle
Move vehicles

. for each customer: handle customer
Handle pickups

Road Network &
Problem Instance

match:
- [Isg Ctiéed?srﬁpoﬁs /I Match logic...
D Sleep 1 sec. = assign(...)

Solution File £ Sleep until next batch
= -
— e

Ground-Truth Simulation State

TABLE nodes(id, Ing, lat)

TABLE vehicles(id, origin, destination, early, late, load, queued, status, route,
last_visited node, next_node_distance, schedule)

TABLE customers(id, origin, destination, early, late, load, status, assignedTo)
TABLE stops(owner, location, type, early, late, visitedAt)

Modularized Ridesharing Algorithms:

a N
class YourAlgorithm : public RSAlgorithm {

public:
YourAlgorithm();

/* Your code in these methods */

virtual void handle_customer(const Customer &);
virtual void handle_vehicle(const Vehicle &);
virtual void end();

virtual void listen();

\\} /

Visit https://github.com/jamjpan/Cargo for sourcecode and examples

WebGL Visualization with Live Updates:

[localhost:3000 x

<« C @ localhost:3000 *

Open Controls

Our Benchmark Problem Instances

Three Road Networks:

i

=
=

Chengdu (2nd Ring), China

Beijing (5th Ring), China

For high service rate, matching rate should

1 20 40 1 20 40 1 20 40

Number of Vehicles (thousands) . -
(a) (capacity=1,3,6) 0 min Time

30 min

: pu pg}(dfﬁ; ";; Number of Queued Customers Over Time, per Algorithm meet or exceed the rate of requests. * The algorithms that achieved the highest _service rates were
o O8N N those that cleared the queue (Nearest Neighbor, Simulated
AR - S A T - NN— GR--- K- BA+ —- SAS0 — GP4 TG GR. BA TG -
g Ot g BT f e Mo o » BA, Annealing, and GRASP).
§ 0.2 v T \\ék %\ * /‘ M‘Aw“\\f“‘i'\f"&ﬂ'u \JF‘& M'/ ! Mv\lf\w *."w/#"\m- M .\"»'w ‘Vw;,’\dﬁ W’ﬂ v, | »") ”\‘{\ v , “ A .
e R | A / / | * Kinetic Tree saved more distance, achieved better service
b N“i?b?f;"{ Vj;’icl,te;‘;goé)sandi? * | | rate, and cleared the queue faster than Greedy.
a) (capacity=1,3, ;
NN +— GR -¥ KT -8 BA+ -©- SA50 % GP4 -& TG -w ' / - - - - .
L, el cap-3(efaul) capet A Y% BN _ . * Despite high service rate, Simulated Annealing and GRASP
5 ol % /Y /’ | did not perform enough descents to result in distance savings.
S 10
B 0 gt : : :
8 30 1Y % N * Trip-Vehicle Gr_ouplng struggled to clear the queue and had
2 4o L o the lowest service rate.

