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Ridesharing: Simulator, Benchmark, and Evaluation
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Travel Separately
(No Ridesharing)

Travel Together
(With Ridesharing)

Customer-to-Vehicle Assignment Algorithms
An Exact Offline Method: Branch-and-Bound (BB) [Cor06]
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1. Label vehicles                 , customers

2. Design origin/destination labels:

For... Origin is labeled... Destination is labeled...
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Customer
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i jV =N o∪N d∪{k , k+m}
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1. Relax the LP and 
solve with simplex

2. Branch on a 
decision variable

3. Bound against 
incumbent

4. Repeat until no 
more branches

Online Search-Based Algorithms: Assignment=σPred (Candidates)Assignment=σPred (Candidates)

For k∈Candidates ,
Pred (k )=(k  is Nearest)
               ∧(k  is valid)
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Nearest-Neighbor (NN) Greedy (GR), Kinetic Tree (KT)

For k∈Candidates,
Pred(k )=(k  minimizes Cost )
               ∧(k  is valid)

Cand. 1
(Nearest)

Cand. 2
(Least Cost)

Customer

Customer 1

Customer 2

Cand. 1

Instead of picking up 
Customer 1...
Instead of picking up 
Customer 1...

...Cand. 1 is re-routed to 
pick up Customer 2
...Cand. 1 is re-routed to 
pick up Customer 2

For k∈Candidates,
Pred (k )=(k  minimizes Cost )
               ∧(k  is valid, with Replace if necessary )

Bilateral Arrangement (BA)

Online Join-Based Algorithms: Assignments=Customers ⋈Pred CandidatesAssignments=Customers ⋈Pred Candidates
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Simulated Annealing (SA)

Descend using random reassigns, 
with chance of hill-climbing

T=1 T=2 T=3

T=6T=5T=4

Greedy Randomized Adaptive Search 
Procedure (GRASP)

Descend through n randomized 
solutions, then select the best one.
Descent procedures:

● Replace
● Swap
● Rearrange

S=1 S=2 S=3 S=4

Step 1: 
RV-Edges

Step 2: 
RR-Edges

Trip1

Trip2

Trip3

Trip4

Trip5

Trip-Vehicle Grouping (TG)

Step 3: 
Form Trips

Step 4: Assign vehicles to trips via integer linear program

Example of six descent stages.

Example of four initial solutions.

= assignment = candidate vehicle = customer

Can ridesharing algorithms make high-quality 
assignments under real-time constraint?

How can we characterize assignment 
techniques?

How do we design a benchmark?

Our Ridesharing Simulator

Our Benchmark Problem Instances

Modularized Ridesharing Algorithms:

class YourAlgorithm : public RSAlgorithm {
 public:
  YourAlgorithm();

  /* Your code in these methods */
  virtual void handle_customer(const Customer &);
  virtual void handle_vehicle(const Vehicle &);
  virtual void end();
  virtual void listen();
}

WebGL Visualization with Live Updates:

Visit https://github.com/jamjpan/Cargo for sourcecode and examples

Three Road Networks:

Beijing (5th Ring), China

Chengdu (2nd Ring), China

Manhattan, USAOver One-Hundred Problem Instances at
https://github.com/jamjpan/Cargo_benchmark
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Reason for Ridesharing

Number of Queued Customers Over Time, per Algorithm
Dynamic: All Algorithms For high service rate, matching rate should 

meet or exceed the rate of requests.

● Potential for saving total travel distances, thereby 
reducing overall fuel use and emissions

● Potential for reducing number of vehicles on the road

0 min 30 min

● The algorithms that achieved the highest service rates were 
those that cleared the queue (Nearest Neighbor, Simulated 
Annealing, and GRASP).

● Kinetic Tree saved more distance, achieved better service 
rate, and cleared the queue faster than Greedy.

● Despite high service rate, Simulated Annealing and GRASP 
did not perform enough descents to result in distance savings.

● Trip-Vehicle Grouping struggled to clear the queue and had 
the lowest service rate.


