

Ridesharing: Simulator, Benchmark, and Evaluation

James Jie Pan, Guoliang Li, Juntao Hu

Motivation

Can ridesharing algorithms make high-quality assignments under <u>real-time constraint</u>?

How can we <u>characterize</u> assignment techniques?

How do we design a <u>benchmark</u>?

Chengdu (2nd Ring), China

Manhattan, USA

Our Simulation Results

Number of Queued Customers Over Time, per Algorithm

For high service rate, matching rate should meet or exceed the rate of requests.

• The algorithms that achieved the highest service rates were those that cleared the queue (Nearest Neighbor, Simulated Annealing, and GRASP).

Over One-Hundred Problem Instances at

https://github.com/jamjpan/Cargo_benchmark

Beijing (5th Ring), China

- Kinetic Tree saved more distance, achieved better service rate, and cleared the queue faster than Greedy.
- Despite high service rate, Simulated Annealing and GRASP did not perform enough descents to result in distance savings.
- Trip-Vehicle Grouping struggled to clear the queue and had the lowest service rate.