Motivation

Can ridesharing algorithms make high-quality
assignments under real-time constraint?

How can we characterize assignment
techniques?

How do we design a benchmark?

Reason for Ridesharing
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* Potential for saving total travel distances, thereby
reducing overall fuel use and emissions

* Potential for reducing number of vehicles on the road

Customer-to-Vehicle Assignment Algorithms
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Our Simulation Results

Dynamic: All Algorithms

Ridesharing: Simulator, Benchmark, and Evaluation
James Jie Pan, Guoliang LI, Juntao Hu

Our Ridesharing Simulator

Thread 1 RSAlgorithm Thread 2

] o e o)

” ive): listen:
while (active): for each vehicle: handle_vehicle
Move vehicles

. for each customer: handle customer
Handle pickups

Road Network &
Problem Instance

match:
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Solution File £ Sleep until next batch
= -
— e

Ground-Truth Simulation State

TABLE nodes(id, Ing, lat)

TABLE vehicles(id, origin, destination, early, late, load, queued, status, route,
last_visited node, next_node_distance, schedule)

TABLE customers(id, origin, destination, early, late, load, status, assignedTo)
TABLE stops(owner, location, type, early, late, visitedAt)

Modularized Ridesharing Algorithms:

a N
class YourAlgorithm : public RSAlgorithm {

public:
YourAlgorithm();

/* Your code in these methods */

virtual void handle_customer(const Customer &);
virtual void handle_vehicle(const Vehicle &);
virtual void end();

virtual void listen();

\\} /

Visit https://github.com/jamjpan/Cargo for sourcecode and examples

WebGL Visualization with Live Updates:
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Our Benchmark Problem Instances

Three Road Networks:

i

=
=

Chengdu (2nd Ring), China

Beijing (5th Ring), China
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