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Rise of Machine Learning for Spatial...
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How machine learning could help to improve
climate forecasts

Mixing artificial intelligence with climate science helps researchers to identify

previously unknown atmospheric processes and rank climate models.
Nicola Jones
23 August 2017

“If you go to major modeling centers and ask them how they work,

the answer won't be machine learning,” says Collins. “"But it will

get there."!

!Nicola Jones. “How machine learning could help to improve climate
forecasts”. In: Nature 548.7668 (2017), pp. 379-380.
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“We discuss the challenges involved in analyzing these massive
data sets as well as opportunities they present for both advancing
machine learning as well as the science of climate change...”?

2Anuj Karpatne and Vipin Kumar. “Big Data in Climate: Opportunities and
Challenges for Machine Learning”. In: KDD (2017), pp. 21-22.



. and Spatial Data Management

Very Large Databases (VLDB)
VLDB 2017 Tm =

43" International Conference on

1= .. Very Large Data Bases

e The Era of Big Spatial Data

Ahmed Eldawy (UC Riverside) (eldawy@cs.ucr.edu)

Mohamed Mokbel (University of Minnesota) (mokbel@cs.umn.edu)
Slides

“In this tutorial, we present the recent work in the database
community for handling Big Spatial Data...”>

3Ahmed Eldawy and Mohamed Mokbel. “The Era of Big Spatial Data”. In:
VLDB (2017).



Why is everyone so excited?

Meteorology in the eyes of data scientists:
» Terabytes of Earth imagery data get generated per day
» Static analysis “macroscale” (e.g. deforestation, land-use,
urban expansion, ...)
> Real-time analysis “microscale” (e.g. flood monitoring,
wildfires, landslides, tornados, ...)
» Somewhere in between “mesoscale” (e.g. soil moisture, crop
production, water availability, ...)
» Discovery and Monitoring: mine data to discover new climate
relationships (e.g. teleconnections, tripoles), monitor real-time
interactions (e.g. wildfires, floods, effects on rainfall...)

» Model Improvement: refine climate models to improve
predictive and reproductive power

> Data Management: ingest, store, query, ... to efficiently
support data applications



Example: IBM Physical Analytics Integrated Repository
and Services (PAIRS)*
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Figure: The IBM Pairs web interface.

» Good for simple retrievals; limited processing capability
» No real-time monitoring
» Limited modeling capability (limited forecasting ability)



Example: ESRI ArcGIS®

Policymaker: “How is land use changing in my district?”
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Figure: Train a convolution neural network based on expert labels, then
feed new images per pixel and collect the predicted land use.

Class Precision Recall
Buildings 82.50 81.28
Roads 84.78 85.13
Waters 86.14 85.55
Harvested 90.38 91.88
Planted 89.05 88.19
Forest 9146 9265

Table 1. Accuracy Assessment of U-Net Model (Precision and Recall in %)

®Amin Tayyebi. “High-Resolution Land Cover Mapping using Deep
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Background: Filesystems and Data Management

Why use data management software (databases) anyway? Isn't the
filesystem good enough?

Magnetic Field lines

read head stn fleld and field reversal
near boundary
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grain
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State:
Binary Value Encoded 1

Figure: Magnetic hard drives store bits (0's and 1's) inside magnetic
fields. A chunk of data (typically 512 bytes) is called a sector and is the
minimum size the drive can write.

> Reading a particular “file” involves spinning the disk to visit
sectors containing the file contents.

» Sometimes sectors belonging to one file are not physically
near each other on the disk, known as “fragmentation”.



Comparison of Read Latencies

> Magnetic disk at 15,000 RPM: up to 4 milliseconds
(4,000,000 ns)

» Solid-state drive (NAND): 50,000-100,000 ns
» RAM: about 60 ns

» CPU L2 cache: about 10 ns

» CPU access: about 1 ns

Reading from disk is about 10° times slower than reading from
RAM. In other words, relative difference between 1 second and 11
days.



Filesystems and Data Management

Both filesystems and databases deal with storage and |/O:

> Filesystems: ext4 (Unix), > Databases: Oracle, SQL

NTFS (Windows), APFS
(Apple)

Fairly uniform use case: fast
file access, security, data
integrity, compression,
paging, volume resizing,
locking

E.g. journaling systems such
as NTFS keep a master log
file to support data restore
in case of crashes

Server, Postgres, Teradata,
Vertica, MongoDB,
MonetDB, kdb+ ...

Data contents are related,
e.g. “find total revenue of
the Rome store over all
Mondays of last year”

“No one size fits all”:
different approaches for
different use cases



No One Size Fits All: Row-Store vs. Column-Store

Consider the 1/0 cost of reading/writing this table:

Item  Category Revenue
Glove  Sport 500
Cap Sport 200
Chair  Housing 450
Table  Housing 100
Shoe Sport 600

Row-store (e.g. H-Store®): {Glove, Sport, 500, Cap, Sport,
200, Chair, Housing, ...}

Column-store (e.g. MonetDB’): {Glove, Cap, Chair, ...,
Sport, Sport, Housing, ..., 500, 200, 450, ...}
®Robert Kallman et al. “H-store: a high-performance, distributed main
memory transaction processing system”. In: VLDB 1.2 (2008), pp. 1496-1499.
"Stratos Idreos et al. “MonetDB: Two Decades of Research in
Column-oriented Database Architectures”. In: |[EEE Data Eng. Bull. 35.1
(2012), pp. 40-45.




Management Systems for Spatial Data: Array Databases

Consider the cost of the blue subarray query:
Relational Database

value

32.5

90.9

42.1

96.7

46.3 Array Database
35.4
35.7
41.3
81.7
35.9
35.3
89.9
53.6
86.3
45.9
27.6

325 46.3 81.7 53.6
90.9 354 359 86.3
42.1 357 353 459
96.7 41.3 89.9 27.6

WNHROWNRFROWNRFEOWNHR O~
WWWWNNNMNNNRRFERRROOOO-.



SciDB®

Traditional RDBMS:

Array-Based DBMS:
> Basic types (integer, float, rray-base

> Array data model

string, ...)
> Relational operators (select, > Array operators (structural
join, group by, ) operators, content
operators)

» Good for queries such as
“What are the phone
numbers for all employees in

» Good for multidimensional
queries such as point
time-range query, spatial

Delaware?” ;
ID Name Location PhoneNumber aggregation query
2 5 4
1 JohnSmith Delaware 123 — 456 — 7890 2 1 8

2 JaneDoe Delaware 123 — 456 — 7891

8The SciDB Development Team. “Overview of SciDB”. In: SIGMOD
(2010).



SciDB: Chunk Storage

Noro] [11] [2] [3] [41]
(o] (2,07) (5,05) (4,09) (2,0.8) (1,0.2)
[11] (505) (3,0.5) (5,0.9) (5,0.5) (5,0.5)
(21| (4,03) | (6,0.1) | (6,05) | (2,0.1) | (7,04)
[31](4,025)] (6,045)| (6,03) | (1,0.1) | (0,0.3)
[4]1] (6,0.5) (1,0.6) (5.05) |(2,015) | (2,04)

Step 1: Vertically partition arributes in the logical array.

N (A} N {8}
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Step 2: Decom h attribute array into equal sized, and
potentially overlapping, churks
N {A} NOIAY N {A} N (A}
BED sz ]t i]6]s AEE
5 3 5 5 5 5 4 6 6 6 1 0
4l6o6 6|z2]7 6|1]s s|z2]z2
. Figure 5: SciDB Storage Manager
SciDB

» Designed to support spatial operators (e.g. Gaussian
smoothing)

» Chunk partitioning motivated by typical access patterns



Benchmarks®

MySQL compared with SciDB; Cluster size 10 nodes, 2GB Ram
+ 3.2 GHz CPU per node

o Loading/Cooking [min] Query Runtimes [min]
’ DBMS | Dataset Load [ Obsv [ Group | Total || QI Q2 Q3 Q4 Q5 Q6 [0l QB Q9 [ Total
small 760 | 110 2 872 [[ 123 | 21 393 0.4 0.36 0.6 0.6 49 50 638
MySQL | normal 770 | 200 90 1060 || 54 44 161 50 32 51 52 395 | 395 | 1234
(scaleup) || (1.0) | (1.8) | (45) | (1.2) [[(04) | (2.1) | (04) | (125) | (89) (85 | (87) | (8.1) | (7.9) | (1.93)
small 34 1.6 0.6 36 82 ] 02 3.7 [0.007 | 0.01 0.01 | 0.01 18 1.9 16

SeiDB | normal || 67 | 19 | 15 | 84 | 36 | 007 | 17 | 0015 | 0017 | 002 [011 | 22 | 23 | 10
sealeup) || 20) | 42 | @5 | ey |04 |04 |0 | an | an | @ |ay | a2 | a2 |06

(MySQL | small @2) | (69) | B3) | @4 |[ (13) | (105) | (106) | (37) | (36) | (60) | (60) | @7) | 26) | (40)
/SCiDB) | normal || (12) [ (105) | ) | (13) || (15) | 630) | (95) | (3330) | (1880) | (2550) | 470) | (180) | (170) | (120)
TABLE I

BENCHMARK RESULTS. (nun) IS A RATIO OF RUNTIMES, EITHER normal VS. small (SCALEUP) OR MYSQL vs. SCIDB.

> “small”: single-machine, 160 3750x3750 images, 99 GB
» “normal”: distributed, 400 7500x7500 images, 990 GB

Takeaway: SciDB achieves 2-orders speedup compared to MySQL
across the 9 benchmark queries on the cluster

Philippe Cudre-Mauroux et al. “SS-DB: a standard science DBMS
benchmark”. In: XLDB (2012).



Application: EarthDB (MODIS)*

HDF Preprocessor P
(mod2esy)
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Figure 3: EarthDB High-Level Data Flow

» Extends SciDB to support MODIS data

10Gary Planthaber, Michael Stonebraker, and James Frew. “EarthDB:
Scalable Analysis of MODIS Data using SciDB". In: SIGSPATIAL (2012),
pp. 11-19.



Application: AscotDB (Astronomy)!?

[FITS file o7 JSON) Ascot Gadgets

SCIDB
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SIGMACLIP
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VIEWER

(Query Trace or JSON]

Ipython notebook

Figure 1: AscotDB architecture: SciDB as back-end, python middleware, Ascot and IPython as front-ends.

» Adds spherical support to SciDB's Cartesian operators
» Adds efficient spherical operators
» Adds Python bindings and graphical interface

» Interdisciplinary collaboration between astronomers and
database experts

11 Jacob Vanderplas et al. “Squeezing a Big Orange into Little Boxes: The
AscotDB System for Parallel Processing of Data on a Sphere”. In: (2015).



TileDB!?

Fragment #1 Fragment #2 Fragment #3
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Figure 4: Fragment examples

» Better support for sparse arrays
» Avoids fixed-dimension chunking and full chunk reads

> Key idea: convert random-access writes into sequential
appends by storing update fragments

12Stavros Papadopoulos et al. “The TileDB Array Data Storage Manager”.
In: VLDB (2016).



space tile extents: 2x2

tileorder: row-major
cellorder: row-major
1 2 3 4
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Files
(binary format)
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Figure 6: Physical organization of dense fragments

space tile extents: 2x2

tile order: row-major
cell order: row-major
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Figure 7: Physical organization of sparse fragments
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Figure 10: Random update performance of dense arrays

s

Figure 14: Subarray performance for sparse arrays

» Random-access update on dense arrays is 2-order faster than
HDF5, 3-order faster than SciDB

» Subarray on sparse arrays is 2-order faster than SciDB
» Dense read comparable to HDF5



Array DB vs HDF5

Array DB

4
| 4

Is a database

Can serve as warehouse of
files from various sources

Supports native operators,
e.g. join, query

Different flavors support
different use cases, e.g.

dense/sparse arrays,
writes/reads, ...

Easy scale-out on clusters

Suitable for frequent, varied
access

HDF5

> Is a file format and library

> Typically stores one “data
product” per file

» Operators are typically at
the application level, e.g. a
Python program to join two
datasets

> Not meant to be distributed
in a cluster

» Suitable for one-shot

processing



GeoTrellis (http://geotrellis.io)

» In-memory big raster analysis on top of Apache Spark

» Data is managed by Hadoop Filesystem!3 (HDFS) for
fault-tolerance and to support map-reduce style computation

> “Moving computation is cheaper than moving data”

HDFS Architecture

Namenode

Metadata (Name, replicas, ...):
/homeffoo/data, 3, ...

Metadata .ops v

Read Datanodes Datanodes
1 ‘ |
@ - = Replication S =
O = O Blocks
. | e
Rack 1 Write Rack 2

BB“HDFS Architecture Guide”. In: ().



GeoTrellis: NDVI Example

NDVI = (NIR — Red)/(NIR + Red) In GeoTrellis:
rdd.mapValues { (red, nir) => (nir - red) /
(nir + red) } .reduceByKey(_.localMaz(_))

Shuffle

Key-1: Value-1
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| : {
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|
|
J

/!
Input files Key-1 : Value-6 /!

Output files
{on HDFS) | (|l

(on HDFS)

Intermediate files
(on local disks)

Figure: From http://www.sunlab.org/teaching/cse6250/
spring2017/lab/image/post/mapreduce-flow. jpg


http://www.sunlab.org/teaching/cse6250/spring2017/lab/image/post/mapreduce-flow.jpg
http://www.sunlab.org/teaching/cse6250/spring2017/lab/image/post/mapreduce-flow.jpg

ClimateSpark!*

» Adds spatiotemporal index to improve data access
» HDF, netCDF files stored inside HDFS, then indexed,
chunked, and finally converted to in-memory RDD's

» RDDs are processed in Spark via map reduce, same as
GeoTrellis

<]
\ ) ff‘/
+ N
ChunkRDD
——| PolygonRDD | ——* + —_— climateRDD
1 2
+ prnj(ec!(inn gen(er)ate FiltrationMaskRDD (S)I
overlay
transformation filtration mask

“Fei Hu et al. “ClimateSpark: An in-memory distributed computing

framework for big climate data and analytics”. In: Computers and Geosciences
(2018).




ClimateSpark

» Experiment: 20 nodes, 24 CPU®©2.35 GHz + 24GB RAM per
node; 1/2° % 5/8° image resolution, roughly 9 TB MERRA2
data spanning 16 years

Varying the query time

33 M spark-overhead ® compuing-time
%- 60
§ 50
@ 40
T
£ 30
= 20
10
0
S0 180 270 360 450 540 630 720

Days
Figure 1. Run time for querying the data in Virginia and computing
the monthly mean when varying the query time



Scalable Machine Learning: MLIib

Many ML operations are a good fit for map reduce. MLLib'® adds
machine learning operators onto Apache Spark. Example, gradient
descent:
wiw—a-y g(wixi,y)
1
for (i <- 1 to n) {
val gradient =
points.map { p =>
(1/(1 + exp(-p.y*w.dot(p.x)) - 1)*p.y*p.x
) .reduce(_ + _)
w —-= alpha*gradient

by

1Xiangrui Meng. “MLIib: Scalable Machine Learning on Spark”. In: ().



Scalable Machine Learning: MLIib

MLIib is a standard Spark component, thus is tightly integrated
with Spark data operations such as Spark SQL:

val trainingTable = sql("""SELECT... FROM... JOIN...""")
val training = traingTable.map { row => ... }
val model = SVMWithSGD.train(training)



Scalable Machine Learning

Integrating machine learning with existing data management tools
is an exciting area of research!®.

®Arun Kumar, Matthias Boehm, and Jun Yang. “Data Management in
Machine Learning: Challenges, Techniques, and Systems”. In: SIGMOD
(2017).



Ridesharing: A different kind of spatial problem
17
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Figure 1: Ridesharing example.

Figure: How to optimally match vehicles to customers and design the
service route?

7 James Pan, Guoliang Li, and Juntao Hu. “Ridesharing: Benchmark,
Simulator, and Evaluation”. In: VLDB (2019).



Ridesharing

18

~

Service Rate (76%)

Quiene Size

(a) GRINS
No Traffic

(b) GRINS-F

Green=no traffic, red=heavy traffic,

r- 4

No Traffic
Figure 4: Jargo usage scenario.
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Figure: How to evaluate ridesharing algorithms? Jargo can achieve
real-time simulation of 1,000's vehicles on commodity machine by
manipulating data of the system instead of physical simulation.

18 James Pan, Guoliang Li, and Yong Wang. “Evaluating Ridesharing
Algorithms using the Jargo Stochastic Simulator”.

In: VLDB (2020).
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Summary

Key takeaways:
> New knowledge hiding in vast amounts of data

» Data management helps work around physical limitations of
storage

» Array DB (SciDB, EarthDB, TileDB) for new science
applications

» Integration of ML with data management, e.g. Spark MLIib

> Very active space



Q&A
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