
A Look at Data Management Systems for
Climate Research

James J. Pan (jamesjpan@outlook.com)

Database Group @ Tsinghua Universty

September 2, 2020

Rise of Machine Learning for Spatial...

“If you go to major modeling centers and ask them how they work,
the answer won’t be machine learning,” says Collins. “But it will
get there.”1

1Nicola Jones. “How machine learning could help to improve climate
forecasts”. In: Nature 548.7668 (2017), pp. 379–380.

ACM Special Interest Group on Knowledge Discovery and Data
Mining (SIGKDD)

“We discuss the challenges involved in analyzing these massive
data sets as well as opportunities they present for both advancing
machine learning as well as the science of climate change...”2

2Anuj Karpatne and Vipin Kumar. “Big Data in Climate: Opportunities and
Challenges for Machine Learning”. In: KDD (2017), pp. 21–22.

... and Spatial Data Management

Very Large Databases (VLDB)

“In this tutorial, we present the recent work in the database
community for handling Big Spatial Data...”3

3Ahmed Eldawy and Mohamed Mokbel. “The Era of Big Spatial Data”. In:
VLDB (2017).

Why is everyone so excited?

Meteorology in the eyes of data scientists:
I Terabytes of Earth imagery data get generated per day

I Static analysis “macroscale” (e.g. deforestation, land-use,
urban expansion, ...)

I Real-time analysis “microscale” (e.g. flood monitoring,
wildfires, landslides, tornados, ...)

I Somewhere in between “mesoscale” (e.g. soil moisture, crop
production, water availability, ...)

I Discovery and Monitoring: mine data to discover new climate
relationships (e.g. teleconnections, tripoles), monitor real-time
interactions (e.g. wildfires, floods, effects on rainfall...)

I Model Improvement: refine climate models to improve
predictive and reproductive power

I Data Management: ingest, store, query, ... to efficiently
support data applications

Example: IBM Physical Analytics Integrated Repository
and Services (PAIRS)4

I E.g. “Give me two years of
temperature in Kyoto, plus
2-week forecast”

4Siyuan Lu. “IBM PAIRS - A Big Physical Data Service to Accelerate
Analytics and Discovery”. In: (2017).

Figure: The IBM Pairs web interface.

I Good for simple retrievals; limited processing capability
I No real-time monitoring
I Limited modeling capability (limited forecasting ability)

Example: ESRI ArcGIS5

Policymaker: “How is land use changing in my district?”

Figure: Train a convolution neural network based on expert labels, then
feed new images per pixel and collect the predicted land use.

5Amin Tayyebi. “High-Resolution Land Cover Mapping using Deep
Learning”. In: Medium (2019).

Overview

Introduction

Background: Filesystems and Data Management

Management Systems for Spatial Data
Array-Based: SciDB and friends
Spark-Based: GeoTrellis and ClimateSpark

Scalable Machine Learning

Summary

Background: Filesystems and Data Management

Why use data management software (databases) anyway? Isn’t the
filesystem good enough?

Figure: Magnetic hard drives store bits (0’s and 1’s) inside magnetic
fields. A chunk of data (typically 512 bytes) is called a sector and is the
minimum size the drive can write.

I Reading a particular “file” involves spinning the disk to visit
sectors containing the file contents.

I Sometimes sectors belonging to one file are not physically
near each other on the disk, known as “fragmentation”.

Comparison of Read Latencies

I Magnetic disk at 15,000 RPM: up to 4 milliseconds
(4,000,000 ns)

I Solid-state drive (NAND): 50,000–100,000 ns

I RAM: about 60 ns

I CPU L2 cache: about 10 ns

I CPU access: about 1 ns

Reading from disk is about 106 times slower than reading from
RAM. In other words, relative difference between 1 second and 11
days.

Filesystems and Data Management

Both filesystems and databases deal with storage and I/O:

I Filesystems: ext4 (Unix),
NTFS (Windows), APFS
(Apple)

I Fairly uniform use case: fast
file access, security, data
integrity, compression,
paging, volume resizing,
locking

I E.g. journaling systems such
as NTFS keep a master log
file to support data restore
in case of crashes

I Databases: Oracle, SQL
Server, Postgres, Teradata,
Vertica, MongoDB,
MonetDB, kdb+ ...

I Data contents are related,
e.g. “find total revenue of
the Rome store over all
Mondays of last year”

I “No one size fits all”:
different approaches for
different use cases

No One Size Fits All: Row-Store vs. Column-Store

Consider the I/O cost of reading/writing this table:

Item Category Revenue
Glove Sport 500
Cap Sport 200
Chair Housing 450
Table Housing 100
Shoe Sport 600

Row-store (e.g. H-Store6): {Glove, Sport, 500, Cap, Sport,

200, Chair, Housing, ...}

Column-store (e.g. MonetDB7): {Glove, Cap, Chair, ...,

Sport, Sport, Housing, ..., 500, 200, 450, ...}
6Robert Kallman et al. “H-store: a high-performance, distributed main

memory transaction processing system”. In: VLDB 1.2 (2008), pp. 1496–1499.
7Stratos Idreos et al. “MonetDB: Two Decades of Research in

Column-oriented Database Architectures”. In: IEEE Data Eng. Bull. 35.1
(2012), pp. 40–45.

Management Systems for Spatial Data: Array Databases

Consider the cost of the blue subarray query:
Relational Database

i j value
0 0 32.5
1 0 90.9
2 0 42.1
3 0 96.7
0 1 46.3
1 1 35.4
2 1 35.7
3 1 41.3
0 2 81.7
1 2 35.9
2 2 35.3
3 2 89.9
0 3 53.6
1 3 86.3
2 3 45.9
3 3 27.6

Array Database

32.5 46.3 81.7 53.6
90.9 35.4 35.9 86.3
42.1 35.7 35.3 45.9
96.7 41.3 89.9 27.6

SciDB8

Traditional RDBMS:

I Basic types (integer, float,
string, ...)

I Relational operators (select,
join, group by, ...)

I Good for queries such as
“What are the phone
numbers for all employees in
Delaware?”

ID Name Location PhoneNumber

1 JohnSmith Delaware 123− 456− 7890
2 JaneDoe Delaware 123− 456− 7891
...

Array-Based DBMS:

I Array data model

I Array operators (structural
operators, content
operators)

I Good for multidimensional
queries such as point
time-range query, spatial
aggregation query

2 5 4
2 1 8
...

8The SciDB Development Team. “Overview of SciDB”. In: SIGMOD
(2010).

SciDB: Chunk Storage

SciDB

I Designed to support spatial operators (e.g. Gaussian
smoothing)

I Chunk partitioning motivated by typical access patterns

Benchmarks9

MySQL compared with SciDB; Cluster size 10 nodes, 2GB Ram
+ 3.2 GHz CPU per node

I “small”: single-machine, 160 3750x3750 images, 99 GB

I “normal”: distributed, 400 7500x7500 images, 990 GB

Takeaway: SciDB achieves 2-orders speedup compared to MySQL
across the 9 benchmark queries on the cluster

9Philippe Cudre-Mauroux et al. “SS-DB: a standard science DBMS
benchmark”. In: XLDB (2012).

Application: EarthDB (MODIS)10

I Extends SciDB to support MODIS data

10Gary Planthaber, Michael Stonebraker, and James Frew. “EarthDB:
Scalable Analysis of MODIS Data using SciDB”. In: SIGSPATIAL (2012),
pp. 11–19.

Application: AscotDB (Astronomy)11

I Adds spherical support to SciDB’s Cartesian operators

I Adds efficient spherical operators

I Adds Python bindings and graphical interface

I Interdisciplinary collaboration between astronomers and
database experts

11Jacob Vanderplas et al. “Squeezing a Big Orange into Little Boxes: The
AscotDB System for Parallel Processing of Data on a Sphere”. In: (2015).

TileDB12

I Better support for sparse arrays

I Avoids fixed-dimension chunking and full chunk reads

I Key idea: convert random-access writes into sequential
appends by storing update fragments

12Stavros Papadopoulos et al. “The TileDB Array Data Storage Manager”.
In: VLDB (2016).

I Random-access update on dense arrays is 2-order faster than
HDF5, 3-order faster than SciDB

I Subarray on sparse arrays is 2-order faster than SciDB

I Dense read comparable to HDF5

Array DB vs HDF5

Array DB

I Is a database

I Can serve as warehouse of
files from various sources

I Supports native operators,
e.g. join, query

I Different flavors support
different use cases, e.g.
dense/sparse arrays,
writes/reads, ...

I Easy scale-out on clusters

I Suitable for frequent, varied
access

HDF5

I Is a file format and library

I Typically stores one “data
product” per file

I Operators are typically at
the application level, e.g. a
Python program to join two
datasets

I Not meant to be distributed
in a cluster

I Suitable for one-shot
processing

GeoTrellis (http://geotrellis.io)

I In-memory big raster analysis on top of Apache Spark
I Data is managed by Hadoop Filesystem13 (HDFS) for

fault-tolerance and to support map-reduce style computation
I “Moving computation is cheaper than moving data”

13“HDFS Architecture Guide”. In: ().

GeoTrellis: NDVI Example

NDVI = (NIR − Red)/(NIR + Red) In GeoTrellis:

rdd.mapValues { (red, nir) => (nir - red) /

(nir + red) } .reduceByKey(.localMax())

Figure: From http://www.sunlab.org/teaching/cse6250/

spring2017/lab/image/post/mapreduce-flow.jpg

http://www.sunlab.org/teaching/cse6250/spring2017/lab/image/post/mapreduce-flow.jpg
http://www.sunlab.org/teaching/cse6250/spring2017/lab/image/post/mapreduce-flow.jpg

ClimateSpark14

I Adds spatiotemporal index to improve data access

I HDF, netCDF files stored inside HDFS, then indexed,
chunked, and finally converted to in-memory RDD’s

I RDDs are processed in Spark via map reduce, same as
GeoTrellis

14Fei Hu et al. “ClimateSpark: An in-memory distributed computing
framework for big climate data and analytics”. In: Computers and Geosciences
(2018).

ClimateSpark

I Experiment: 20 nodes, 24 CPU@2.35 GHz + 24GB RAM per
node; 1/2o ∗ 5/8o image resolution, roughly 9 TB MERRA2
data spanning 16 years

Scalable Machine Learning: MLlib

Many ML operations are a good fit for map reduce. MLLib15 adds
machine learning operators onto Apache Spark. Example, gradient
descent:

w ← w − α ·
∑
i

g(w ; xi , yi)

for (i <- 1 to n) {

val gradient =

points.map { p =>

(1/(1 + exp(-p.y*w.dot(p.x)) - 1)*p.y*p.x

).reduce(_ + _)

w -= alpha*gradient

}

15Xiangrui Meng. “MLlib: Scalable Machine Learning on Spark”. In: ().

Scalable Machine Learning: MLlib

MLlib is a standard Spark component, thus is tightly integrated
with Spark data operations such as Spark SQL:

val trainingTable = sql("""SELECT... FROM... JOIN...""")

val training = traingTable.map { row => ... }

val model = SVMWithSGD.train(training)

Scalable Machine Learning

Integrating machine learning with existing data management tools
is an exciting area of research16.

16Arun Kumar, Matthias Boehm, and Jun Yang. “Data Management in
Machine Learning: Challenges, Techniques, and Systems”. In: SIGMOD
(2017).

Ridesharing: A different kind of spatial problem

17

Figure: How to optimally match vehicles to customers and design the
service route?

17James Pan, Guoliang Li, and Juntao Hu. “Ridesharing: Benchmark,
Simulator, and Evaluation”. In: VLDB (2019).

Ridesharing

18

Figure: How to evaluate ridesharing algorithms? Jargo can achieve
real-time simulation of 1,000’s vehicles on commodity machine by
manipulating data of the system instead of physical simulation.

18James Pan, Guoliang Li, and Yong Wang. “Evaluating Ridesharing
Algorithms using the Jargo Stochastic Simulator”. In: VLDB (2020).

Summary

Key takeaways:

I New knowledge hiding in vast amounts of data

I Data management helps work around physical limitations of
storage

I Array DB (SciDB, EarthDB, TileDB) for new science
applications

I Integration of ML with data management, e.g. Spark MLlib

I Very active space

Thank you!

Q&A

	Introduction
	Background: Filesystems and Data Management
	Management Systems for Spatial Data
	Array-Based: SciDB and friends
	Spark-Based: GeoTrellis and ClimateSpark

	Scalable Machine Learning
	Summary

